Influence of micro-length-scale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko’s sandwich piezoelectric microbeam

2017 ◽  
Vol 21 (4) ◽  
pp. 1243-1270 ◽  
Author(s):  
Mohammad Arefi ◽  
Ashraf M Zenkour

In this study, the strain gradient theory is employed to derive governing equations of motion of a functionally graded Timoshenko’s sandwich microbeam resting on Pasternak’s foundation. The microbeam is including a micro-core and two piezoelectric face-sheets on top and bottom. The plate is actuated with applied electric potential at top of piezoelectric face-sheets. The governing equations of motion are derived using Hamilton’s principle and strain gradient theory. After derivation of governing equations of motion, the problem is solved for three classes of analysis including wave propagation, free vibration and bending analysis. The numerical results are presented to reflect the effect of important parameters such as wave number, applied voltage, inhomogeneous index, parameters of foundation and material length-scale parameters on the different responses. The obtained results indicated that changing material length-scale parameters leads to a stiffer structure that increase natural frequencies and decreases transverse deflection and maximum electric potential.

Author(s):  
R. Ansari ◽  
R. Gholami ◽  
S. Sahmani

In the current study, the nonlinear free vibration behavior of microbeams made of functionally graded materials (FGMs) is investigated based on the strain gradient elasticity theory and von Karman geometric nonlinearity. The nonclassical beam model is developed in the context of the Timoshenko beam theory which contains material length scale parameters to take the size effect into account. The model can reduce to the beam models based on the modified couple stress theory (MCST) and the classical beam theory (CBT) if two or all material length scale parameters are taken to be zero, respectively. The power low function is considered to describe the volume fraction of the ceramic and metal phases of the FGM microbeams. On the basis of Hamilton’s principle, the higher-order governing differential equations are obtained which are discretized along with different boundary conditions using the generalized differential quadrature method. The dimensionless linear and nonlinear frequencies of microbeams with various values of material property gradient index are calculated and compared with those obtained based on the MCST and an excellent agreement is found. Moreover, comparisons between the various beam models on the basis of linear and nonlinear types of strain gradient theory (SGT) and MCST are presented and it is observed that the difference between the frequencies obtained by the SGT and MCST is more significant for lower values of dimensionless length scale parameter.


2000 ◽  
Vol 67 (4) ◽  
pp. 803-812 ◽  
Author(s):  
S. Hao ◽  
W. K. Liu ◽  
D. Qian

A localization-induced cohesive model has been proposed for shear band evolution, crack growth, and fracture. Strain gradient theory has been applied to establish the criterion of the onset of localization and the governing equation in the post-bifurcation stage. Analytical solutions in one-dimensional case are used to establish the “traction-separation” law, in which strain gradient and material intrinsic length scale present strong effects. In addition, the solution predicts a finite width for the localization-induced band. It is observed that a larger length scale contributes to the growth of a larger width of localization region and separation for softening materials. The proposed model provides a procedure to establish the fracture toughness analytically since the material length scale is taken into account. From the traction-separation analysis, it is found that damage decreases separation, whereas an increase in material length scale increases the opening displacement; however, the traction-normalized opening displacement curves (with respect to the material length scale) are identical. Based on the methodology of multiple scale analysis in meshfree method, a computational approach has been proposed to enrich the one-dimensional traction-separation law to define fracture. [S0021-8936(00)01104-1]


Author(s):  
Zia Saadatnia ◽  
Ebrahim Esmailzadeh ◽  
Davood Younesian

Nonlinear free vibration of micro-beams based on the Timoshenko beam model is studied. The governing equations of motion using the strain gradient theory, Von Kármán strain tensors and Hamiltonian principle, are developed. The Galerkin method is applied to the governing equations and the coupled nonlinear ordinary differential equations of system are obtained. The variational iteration method is utilized to determine the time responses of the micro-beam and also a close form expression for the frequency-amplitude is found. The analytical solutions obtained for different values of parameters are compared with those found from different numerical methods. The effects of geometrical and physical parameters on the dynamics of micro-beam are also examined. Moreover, the analytical formulation for frequency ratio, i.e., the ratio of nonlinear natural frequency to the linear one is obtained and the sensitivity of this ratio to the variations of various parameters is evaluated. It is proved that the proposed solution methods and the results obtained are accurate and reliable when dynamics of such micro structures are studied.


2018 ◽  
Vol 18 (09) ◽  
pp. 1850114 ◽  
Author(s):  
Abbas Rahi

This paper focuses on the size dependency of lateral vibration of a micro overhung rotor-disk system subjected to an axial load based on the modified strain gradient theory. The governing equations of motions as well as the boundary conditions are derived from Hamilton’s principle. The assumed modes approach is employed to transform the governing partial differential equations into a set of infinite ordinary differential equations. The first two natural frequencies and associated instability rotational speeds of the system are analytically determined. The effects of variation in the parameters, such as the rotational speed, material length scale parameters, axial load and rotor length, on the natural frequencies and instability speeds are discussed and presented. The results obtained reveal that each of the material length scale parameters has a significant impact on the vibration response characteristics of the system.


Author(s):  
Bo Zhou ◽  
Zetian Kang ◽  
Xiao Ma ◽  
Shifeng Xue

This paper focuses on the size-dependent behaviors of functionally graded shape memory alloy (FG-SMA) microbeams based on the Bernoulli-Euler beam theory. It is taken into consideration that material properties, such as austenitic elastic modulus, martensitic elastic modulus and critical transformation stresses vary continuously along the longitudinal direction. According to the simplified linear shape memory alloy (SMA) constitutive equations and nonlocal strain gradient theory, the mechanical model was established via the principle of virtual work. Employing the Galerkin method, the governing differential equations were numerically solved. The functionally graded effect, nonlocal effect and size effect of the mechanical behaviors of the FG-SMA microbeam were numerically simulated and discussed. Results indicate that the mechanical behaviors of FG-SMA microbeams are distinctly size-dependent only when the ratio of material length scale parameter to the microbeam height is small enough. Both the increments of material nonlocal parameter and ratio of material length-scale parameter to the microbeam height all make the FG-SMA microbeam become softer. However, the stiffness increases with the increment of FG parameter. The FG parameter plays an important role in controlling the transverse deformation of the FG-SMA microbeam. This work can provide a theoretical basis for the design and application of FG-SMA microstructures.


2018 ◽  
Vol 25 (1) ◽  
pp. 203-218 ◽  
Author(s):  
Reza Bahaadini ◽  
Ali Reza Saidi ◽  
Mohammad Hosseini

A nonlocal strain gradient Timoshenko beam model is developed to study the vibration and instability analysis of the carbon nanotubes conveying nanoflow. The governing equations of motion and boundary conditions are derived by employing Hamilton’s principle, including the effects of moving fluid, material length scale and nonlocal parameters, Knudsen number and gravity force. The material length scale and nonlocal parameters are considered, in order to take into account the size effects. Also, to consider the small-size effects on the flow field, the Knudsen number is used as a discriminant parameter. The Galerkin approach is chosen to analyze the governing equations under clamped–clamped, clamped–hinged and hinged–hinged boundary conditions. It is found that the natural frequency and critical fluid velocity can be decreased by increasing the nonlocal parameter or decreasing the material length scale parameter. Furthermore, it is revealed that the critical flow velocity does not affected by two size-dependent parameters and various boundary conditions in the free molecular flow regime.


2019 ◽  
Vol 87 (3) ◽  
Author(s):  
Jingru Song ◽  
Yueguang Wei

Abstract With specimen size decrease for advanced structural materials, the measured mechanics behaviors display the strong size effects. In order to characterize the size effects, several higher-order theories have been presented in the past several decades, such as the strain gradient theories and the micro-polar theories, etc. However, in each higher-order theory, there are several length scale parameters included, which are usually taken as the material parameters and are determined by using the corresponding theoretical predictions to fit experimental results. Since such kind of experimental approaches needs high techniques, it is very difficult to be performed; therefore, the obtained experimental results are very few until now; in addition, the physical meanings of the parameters still need to be investigated. In the present research, an equivalent linkage method is used to simply determine the elastic length parameters appeared in the elastic strain gradient theory for a series of typical metal materials. We use both the elastic strain gradient theory and the higher-order Cauchy-Born rule to model the materials mechanics behaviors by means of a spherical expanding model and then make a linkage for both kinds of results according to the equivalence of strain energy densities. The values of the materials length parameters are obtained for a series of typical metal systems, such as the face-centered cubic (FCC), body-centered cubic (BCC), and hexagonal close-packed (HCP) metals.


2016 ◽  
Vol 30 (36) ◽  
pp. 1650421 ◽  
Author(s):  
Behrouz Karami ◽  
Maziar Janghorban

In this paper, the effect of magnetic field on the wave propagation in rectangular nanoplates based on two-variable refined plate theory is studied. In order to capture the size effects, the strain gradient theory with one length scale parameter is used. From our knowledge, it is the first time that two-variable refined plate theory is adopted for studying bulk waves in nanoplates. This type of refined plate theory has only two unknowns which reduces the complexity of the governing equations. To show the accuracy of this work, several comparisons are made with available results in open literature.


Sign in / Sign up

Export Citation Format

Share Document