scholarly journals Effect of Inlet Velocity Profiles on Patient-Specific Computational Fluid Dynamics Simulations of the Carotid Bifurcation

2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Ian C. Campbell ◽  
Jared Ries ◽  
Saurabh S. Dhawan ◽  
Arshed A. Quyyumi ◽  
W. Robert Taylor ◽  
...  

Patient-specific computational fluid dynamics (CFD) is a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as MRI and CT can provide high resolution information about vessel geometry, but in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. We studied how idealized inlet velocity profiles (blunt, parabolic, and Womersley flow) affect patient-specific CFD results when compared to simulations employing a “reference standard” of the patient’s own measured velocity profile in the carotid bifurcation. To place the magnitude of these effects in context, we also investigated the effect of geometry and the use of subject-specific flow waveform on the CFD results. We quantified these differences by examining the pointwise percent error of the mean wall shear stress (WSS) and the oscillatory shear index (OSI) and by computing the intra-class correlation coefficient (ICC) between axial profiles of the mean WSS and OSI in the internal carotid artery bulb. The parabolic inlet velocity profile produced the most similar mean WSS and OSI to simulations employing the real patient-specific inlet velocity profile. However, anatomic variation in vessel geometry and the use of a nonpatient-specific flow waveform both affected the WSS and OSI results more than did the choice of inlet velocity profile. Although careful selection of boundary conditions is essential for all CFD analysis, accurate patient-specific geometry reconstruction and measurement of vessel flow rate waveform are more important than the choice of velocity profile. A parabolic velocity profile provided results most similar to the patient-specific velocity profile.

Author(s):  
Jared Ries ◽  
Ian C. Campbell ◽  
Saurabh S. Dhawan ◽  
Arshed A. Quyyumi ◽  
W. Robert Taylor ◽  
...  

Computational fluid dynamics (CFD) is emerging as a powerful tool for researching the role of blood flow in disease processes. Modern clinical imaging technology such as magnetic resonance (MR) angiography and computed tomography (CT) can provide very high resolution information about the geometry of patients’ vasculature for such modeling. However, in many situations, patient-specific inlet velocity information is not available. In these situations, a simplified velocity profile must be selected. In this study, we sought to identify how idealized inlet velocity profiles (blunt flow, parabolic flow, and Womersley flow) affect patient-specific CFD results when compared to simulations employing the real measured velocity profile for each patient. Focusing on the carotid bifurcation, a site prone to atherosclerosis because of its branching geometry and oscillatory flow patterns, we investigated the effect of inlet flow assumptions on hemodynamic parameters known to be associated with atherosclerosis and vascular disease, namely mean wall shear stress (WSS) and oscillatory shear index (OSI) [1].


2011 ◽  
Vol 1 (2) ◽  
pp. 116-125 ◽  
Author(s):  
Jiyuan Tu ◽  
Kelvin K. L. Wong ◽  
Sherman C. P. Cheung ◽  
Richard Beare ◽  
Thanh Phan

Author(s):  
Jonathan P. Mynard ◽  
David A. Steinman

Doppler ultrasound (DUS) is a non-invasive means of obtaining patient-specific flow boundary conditions in computational modelling studies [1] or estimating volumetric flow in clinical studies [2, 3]. To convert velocity information to a flow waveform, three related assumptions are often applied, 1) that the peak velocity lies in the centre of a cylindrical vessel, 2) that a centrally-located sample volume will thus detect the peak velocity, and 3) that the velocity profile is fully-developed and axisymmetric, being well-approximated by a parabolic (Poiseuille) or Womersley profile. These assumptions may not always be valid, however, even for nominally straight vessels like the common carotid artery (CCA) [4, 5]. While one might expect that flow estimated from DUS would become increasingly inaccurate as the profile becomes less axisymmetric, the scale of such errors and their relation to the true profile shape have not been quantified for the CCA. Moreover, for a heavily skewed velocity profile, the peak velocity may not lie within the DUS sample volume, and hence the choice of sample volume or beam-vessel orientation may also affect the accuracy of flow calculations. In this study, we investigate these issues by performing an idealized virtual DUS on data from image-based computational models of the carotid bifurcation.


Author(s):  
N. Kharoua ◽  
L. Khezzar ◽  
Z. Nemouchi ◽  
M. AlShehhi

Large Eddy Simulation study of plane impinging jets with different inlet velocity profiles was conducted. The inlet velocity profile was forced at a frequency equal to 600Hz and amplitude equal to 30% of the mean inlet velocity. The Reynold number, based on the jet width W and the inlet velocity, is equal to 5600. The distance of the jet exit from the target wall was varied from 2W to 10W to cover different types of impinging jets with different flow structures. The time-averaged Nusselt Number Nu profiles, along the curved wall, are characterized by two peaks for the shortest distance 2W and only one peak, at the impingement region, for the largest distance 10W. The first peak, at the impingement region is investigated through profiles of the mean axial velocity, the rms axial velocity, the mean static pressure, and the mean static temperature plotted on the jet centerline. For the second peak of the Nu (2W case), the turbulence level and the thickness of the highly turbulent layer near the curved wall were depicted on curved lines parallel and very close to the target wall. Forcing the considered jets at 600Hz was found to reduce the Nu while a fully developed inlet velocity profile causes an important increase of the Nu at the impingement region compared with flat inlet velocity profiles.


2019 ◽  
Vol 12 (6) ◽  
pp. 626-630 ◽  
Author(s):  
Nicole M Cancelliere ◽  
Mehdi Najafi ◽  
Olivier Brina ◽  
Pierre Bouillot ◽  
Maria I Vargas ◽  
...  

Background and purposeComputational fluid dynamics (CFD) can provide valuable information regarding intracranial hemodynamics. Patient-specific models can be segmented from various imaging modalities, which may influence the geometric output and thus hemodynamic results. This study aims to compare CFD results from aneurysm models segmented from three-dimensional rotational angiography (3D-RA) versus novel four-dimensional CT angiography (4D-CTA).MethodsFourteen patients with 16 cerebral aneurysms underwent novel 4D-CTA followed by 3D-RA. Endoluminal geometries were segmented from each modality using an identical workflow, blinded to the other modality, to produce 28 'original' models. Each was then minimally edited a second time to match length of branches, producing 28 additional 'matched' models. CFD simulations were performed using estimated flow rates for 'original' models (representing real-world experience) and patient-specific flow rates from 4D-CTA for 'matched' models (to control for influence of modality alone).ResultsOverall, geometric and hemodynamic results were consistent between models segmented from 3D-RA and 4D-CTA, with correlations improving after matching to control for operator-introduced variability. Despite smaller 4D-CTA parent artery diameters (3.49±0.97 mm vs 3.78±0.92 mm for 3D-RA; p=0.005) and sac volumes (157 (37–750 mm3) vs 173 (53–770 mm3) for 3D-RA; p=0.0002), sac averages of time-averaged wall shear stress (TAWSS), oscillatory shear (OSI), and high frequency fluctuations (measured by spectral power index, SPI) were well correlated between 3D-RA and 4D-CTA 'matched' control models (TAWSS, R2=0.91; OSI, R2=0.79; SPI, R2=0.90).ConclusionsOur study shows that CFD performed using 4D-CTA models produces reliable geometric and hemodynamic information in the intracranial circulation. 4D-CTA may be considered as a follow-up imaging tool for hemodynamic assessment of cerebral aneurysms.


2021 ◽  
Vol 11 (4) ◽  
pp. 520
Author(s):  
Emily R. Nordahl ◽  
Susheil Uthamaraj ◽  
Kendall D. Dennis ◽  
Alena Sejkorová ◽  
Aleš Hejčl ◽  
...  

Computational fluid dynamics (CFD) has grown as a tool to help understand the hemodynamic properties related to the rupture of cerebral aneurysms. Few of these studies deal specifically with aneurysm growth and most only use a single time instance within the aneurysm growth history. The present retrospective study investigated four patient-specific aneurysms, once at initial diagnosis and then at follow-up, to analyze hemodynamic and morphological changes. Aneurysm geometries were segmented via the medical image processing software Mimics. The geometries were meshed and a computational fluid dynamics (CFD) analysis was performed using ANSYS. Results showed that major geometry bulk growth occurred in areas of low wall shear stress (WSS). Wall shape remodeling near neck impingement regions occurred in areas with large gradients of WSS and oscillatory shear index. This study found that growth occurred in areas where low WSS was accompanied by high velocity gradients between the aneurysm wall and large swirling flow structures. A new finding was that all cases showed an increase in kinetic energy from the first time point to the second, and this change in kinetic energy seems correlated to the change in aneurysm volume.


2021 ◽  
Vol 10 (7) ◽  
pp. 1348
Author(s):  
Karol Wiśniewski ◽  
Bartłomiej Tomasik ◽  
Zbigniew Tyfa ◽  
Piotr Reorowicz ◽  
Ernest Bobeff ◽  
...  

Background: The objective of our project was to identify a late recanalization predictor in ruptured intracranial aneurysms treated with coil embolization. This goal was achieved by means of a statistical analysis followed by a computational fluid dynamics (CFD) with porous media modelling approach. Porous media CFD simulated the hemodynamics within the aneurysmal dome after coiling. Methods: Firstly, a retrospective single center analysis of 66 aneurysmal subarachnoid hemorrhage patients was conducted. The authors assessed morphometric parameters, packing density, first coil volume packing density (1st VPD) and recanalization rate on digital subtraction angiograms (DSA). The effectiveness of initial endovascular treatment was visually determined using the modified Raymond–Roy classification directly after the embolization and in a 6- and 12-month follow-up DSA. In the next step, a comparison between porous media CFD analyses and our statistical results was performed. A geometry used during numerical simulations based on a patient-specific anatomy, where the aneurysm dome was modelled as a separate, porous domain. To evaluate hemodynamic changes, CFD was utilized for a control case (without any porosity) and for a wide range of porosities that resembled 1–30% of VPD. Numerical analyses were performed in Ansys CFX solver. Results: A multivariate analysis showed that 1st VPD affected the late recanalization rate (p < 0.001). Its value was significantly greater in all patients without recanalization (p < 0.001). Receiver operating characteristic curves governed by the univariate analysis showed that the model for late recanalization prediction based on 1st VPD (AUC 0.94 (95%CI: 0.86–1.00) is the most important predictor of late recanalization (p < 0.001). A cut-off point of 10.56% (sensitivity—0.722; specificity—0.979) was confirmed as optimal in a computational fluid dynamics analysis. The CFD results indicate that pressure at the aneurysm wall and residual flow volume (blood volume with mean fluid velocity > 0.01 m/s) within the aneurysmal dome tended to asymptotically decrease when VPD exceeded 10%. Conclusions: High 1st VPD decreases the late recanalization rate in ruptured intracranial aneurysms treated with coil embolization (according to our statistical results > 10.56%). We present an easy intraoperatively calculable predictor which has the potential to be used in clinical practice as a tip to improve clinical outcomes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David R. Rutkowski ◽  
Alejandro Roldán-Alzate ◽  
Kevin M. Johnson

AbstractBlood flow metrics obtained with four-dimensional (4D) flow phase contrast (PC) magnetic resonance imaging (MRI) can be of great value in clinical and experimental cerebrovascular analysis. However, limitations in both quantitative and qualitative analyses can result from errors inherent to PC MRI. One method that excels in creating low-error, physics-based, velocity fields is computational fluid dynamics (CFD). Augmentation of cerebral 4D flow MRI data with CFD-informed neural networks may provide a method to produce highly accurate physiological flow fields. In this preliminary study, the potential utility of such a method was demonstrated by using high resolution patient-specific CFD data to train a convolutional neural network, and then using the trained network to enhance MRI-derived velocity fields in cerebral blood vessel data sets. Through testing on simulated images, phantom data, and cerebrovascular 4D flow data from 20 patients, the trained network successfully de-noised flow images, decreased velocity error, and enhanced near-vessel-wall velocity quantification and visualization. Such image enhancement can improve experimental and clinical qualitative and quantitative cerebrovascular PC MRI analysis.


Sign in / Sign up

Export Citation Format

Share Document