A Higher-Order Method for Dynamic Optimization of Controllable Linear Time-Invariant Systems

2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Damiano Zanotto ◽  
Giulio Rosati ◽  
Sunil K. Agrawal

This work describes a new procedure for dynamic optimization of controllable linear time-invariant (LTI) systems. Unlike the traditional approach, which results in 2 n first-order differential equations, the method proposed here yields a set of m differential equations, whose highest order is twice the controllability index of the system p. This paper generalizes the approach presented in a previous work to any controllable LTI system.

Author(s):  
Damiano Zanotto ◽  
Sunil K. Agrawal ◽  
Giulio Rosati

This work describes a new procedure for dynamic optimization of controllable Linear time-invariant (LTI) systems. Unlike the traditional approach, which results in 2n first order differential equations, the method proposed here yields a set of m differential equations, whose highest order is twice the controllability index of the system p. This paper generalizes the approach presented in a previous work [1] to any controllable LTI system.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Xian-Feng Zhou ◽  
Song Liu ◽  
Wei Jiang

Some flaws on impulsive fractional differential equations (systems) have been found. This paper is concerned with the complete controllability of impulsive fractional linear time-invariant dynamical systems with delay. The criteria on the controllability of the system, which is sufficient and necessary, are established by constructing suitable control inputs. Two examples are provided to illustrate the obtained results.


Author(s):  
Ljiljana Milic

Linear time-invariant systems operate at a single sampling rate i.e. the sampling rate is the same at the input and at the output of the system, and at all the nodes inside the system. Thus, in an LTI system, the sampling rate doesn’t change in different stages of the system. Systems that use different sampling rates at different stages are called the multirate systems. The multirate techniques are used to convert the given sampling rate to the desired sampling rate, and to provide different sampling rates through the system without destroying the signal components of interest. In this chapter, we consider the sampling rate alterations when changing the sampling rate by an integer factor. We describe the basic sampling rate alteration operations, and the effects of those operations on the spectrum of the signal.


Author(s):  
Stephan Häfner ◽  
Reiner Thomä

The paper deals with the identification of linear time invariant (LTI) systems by a special observer. An observer emitting an frequency modulated continuous wave (FMCW) signal and having a stretch processor as receiver will be considered for system identification. A thorough derivation of the gathered baseband signal for arbitrary LTI systems will be given. It is shown, that the received signal is approximately given by the transfer function of the LTI system over the frequency sweep of the FMCW signal. The proof relies on an infinite large time-bandwidth product of the transmit signal, such that errors remain in practical applications with a finite time-bandwidth product. Monte–Carlo simulations are conducted to verify the approximation and to quantify its accuracy and remaining errors. The findings are important for e.g. calibration or derivation of a device model in FMCW radar applications.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 152
Author(s):  
Mutti-Ur Rehman ◽  
Sohail Iqbal ◽  
Jehad Alzabut ◽  
Rami Ahmad El-Nabulsi

In this article, we present a stability analysis of linear time-invariant systems in control theory. The linear time-invariant systems under consideration involve the diagonal norm bounded linear differential inclusions. We propose a methodology based on low-rank ordinary differential equations. We construct an equivalent time-invariant system (linear) and use it to acquire an optimization problem whose solutions are given in terms of a system of differential equations. An iterative method is then used to solve the system of differential equations. The stability of linear time-invariant systems with diagonal norm bounded differential inclusion is studied by analyzing the Spectrum of equivalent systems.


Sign in / Sign up

Export Citation Format

Share Document