scholarly journals Discussion: “Stresses in Curved Beams—A Tabular Method of Solution Based on Winkler’s Theory” (Wright, W., 1953, ASME J. Appl. Mech., 20, pp. 138–139)

1953 ◽  
Vol 20 (3) ◽  
pp. 444-445
Author(s):  
W. E. Black
1953 ◽  
Vol 20 (1) ◽  
pp. 138-139
Author(s):  
W. Wright

Abstract The method outlined in this paper is one which is applicable to all shapes of cross section. It is quicker than the orthodox methods and, in the case of irregular or complex sections, not only quicker but also more accurate.


Author(s):  
Marzia S Vaccaro ◽  
Francesco P Pinnola ◽  
Francesco Marotti de Sciarra ◽  
Marko Canadija ◽  
Raffaele Barretta

In this research, the size-dependent static behaviour of elastic curved stubby beams is investigated by Timoshenko kinematics. Stress-driven two-phase integral elasticity is adopted to model size effects which soften or stiffen classical local responses. The corresponding governing equations of nonlocal elasticity are established and discussed, non-classical boundary conditions are detected and an effective coordinate-free solution procedure is proposed. The presented mixture approach is elucidated by solving simple curved small-scale beams of current interest in Nanotechnology. The contributed results could be useful for design and optimization of modern sensors and actuators.


2017 ◽  
Vol 865 ◽  
pp. 325-330 ◽  
Author(s):  
Vladimir I. Andreev ◽  
Lyudmila S. Polyakova

The paper proposes the numerical method of solution the problems of calculation the stress state in thick-walled cylinders and spheres from physically nonlinear inhomogeneous material. The urgency of solved problem due to the change of mechanical properties of materials under the influence of different physical fields (temperature, humidity, radiation, etc.). The deformation diagram describes the three-parameter formula. The numerical method used the method of successive approximations. The results of numerical calculation are compared with the test analytical solutions obtaining the authors with some restrictions on diagram parameters. The obtained results can be considered quite satisfactory.


2020 ◽  
Vol 1006 ◽  
pp. 93-100
Author(s):  
Vadym Nizhnyk ◽  
Yurii Feshchuk ◽  
Volodymyr Borovykov

Based on analysis of appropriate literary sources we established that estimation of fire separation distances was based of two criteria: heat flux and temperature. We proposed to use “ignition temperature of materials” as principal criterion when determining fire separation distances between adjacent construction facilities. Based on the results derived while performing complete factorial we created mathematical model to describe trend of changing fire separation distances depending on caloric power of fire load (Q), openings factor of the external enclosing structures (k) and duration of irradiation (t); moreover, its adequacy was confirmed. Based on linear regression equations we substantiated calculation and tabular method for the determination of fire separation distances for a facility being irradiated which contains combustible or otherwise non-combustible façade and a facility where liquid oil products turn. We developed and proposed general methodology for estimation of fire separation distances between construction facilities by calculation.


1971 ◽  
Vol 38 (3) ◽  
pp. 608-614 ◽  
Author(s):  
Y. C. Pao ◽  
Ting-Shu Wu ◽  
Y. P. Chiu

This paper is concerned with the plane-strain problem of an elastic layer supported on a half-space foundation and indented by a cylinder. A study is presented of the effect of the contact condition at the layer-foundation interface on the contact stresses of the indented layer. For the general problem of elastic indenter or elastic foundation, the integral equations governing the contact stress distribution of the indented layer derived on the basis of two-dimensional theory of elasticity are given and a numerical method of solution is formulated. The limiting contact conditions at the layer-foundation interface are then investigated by considering two extreme cases, one with the indented layer in frictionless contact with the half space and the other with the indented layer rigidly adhered to the half space. Graphs of the bounds on the maximum normal stress occurring in indented elastic layers for the cases of rigid cylindrical indenter and rigid half-space foundation are obtained for possible practical applications. Some results of the elastic indenter problem are also presented and discussed.


Author(s):  
D. C. F. Leigh

ABSTRACTA method, very suitable for use with an automatic computer, of solving the Hartree-Womersley approximation to the incompressible boundary-layer equation is developed. It is based on an iterative process and the Choleski method of solving a simultaneous set of linear algebraic equations. The programming of this method for an automatic computer is discussed. Tables of a solution of the boundary-layer equation in a region upstream of the separation point are given. In the upstream neighbourhood of separation this solution is compared with Goldstein's asymptotic solution and the agreement is good.


Sign in / Sign up

Export Citation Format

Share Document