scholarly journals Discussion: “Temperature Distribution and Efficiency of a Heat Exchanger Using Square Fins on Round Tubes” (Zabronsky, H., 1955, ASME J. Appl. Mech., 22, pp. 119–122)

1955 ◽  
Vol 22 (4) ◽  
pp. 599-600
Author(s):  
R. H. Norris
2017 ◽  
Vol 118 ◽  
pp. 742-747 ◽  
Author(s):  
Wenkai Li ◽  
Jiangying Peng ◽  
Wanli Xiao ◽  
Honghao Wang ◽  
Jinsong Zeng ◽  
...  

2012 ◽  
Vol 430-432 ◽  
pp. 1428-1432
Author(s):  
Rui Quan ◽  
Xin Feng Tang ◽  
Shu Hai Quan ◽  
Ji Guang Wang

The output performance of Automobile Exhaust Thermoelectric Generator (AETEG) is related to the temperature difference and electric connection topology of thermoelectric modules, in order to decrease the ring current among the thermoelectric modules in parallel with different temperature difference and enhance the output performance, a novel heat exchanger using in AETEG is designed in this paper. The interior structure of heat exchanger with fishbone is analysed, then its surface temperature distribution is simulated with ANSYS software and experimented with thermal imaging instrument. Both of the results show that the surface temperature distribution of the fishbone heat exchanger designed in this paper is more uniform in lateral direction and dispalys an obvious gradient in fore-and-aft surface, compared with the one of cavity designed before, the novel heat exchanger has overwhelming advantage in the output performance of AETEG, and the method adopted in this paper is feasible and practical.


2015 ◽  
Author(s):  
Nurullah Kayaci ◽  
Hakan Demir ◽  
Ş. Özgür Atayılmaz ◽  
Özden Ağra

The earth is an energy resource which has more suitable and stable temperatures than air. Ground Source Heat Pumps (GSHPs) were developed to use ground energy for residential heating. The most important part of a GSHP is the Ground Heat Exchanger (GHE) that consists of pipes buried in the soil and is used for transferring heat between the soil and the heat exchanger of the GSHP. Soil composition, density, moisture and burial depth of pipes affect the size of a GHE. There are plenty of works on ground source heat pumps and ground heat exchangers in the literature. Most of the works on ground heat exchangers are based on the heat transfer in the soil and temperature distribution around the coil. Some of the works for thermo-economic optimization of thermal systems are based on thermodynamic cycles. GHEs is commonly sized according to short time (one year or less) simulation algorithms. Variation of soil temperature in long time period is more important and, therefore, long term simulation is required to be assure the performance of the GSHP system. In this study, long time (10 years) simulation for parallel pipe GHE of a GSHP system was performed numerically with dynamical boundary conditions. In the numerical study ANSYS CFD package was used. This package uses a technique based on control volume theory to convert the governing equations to algebraic equations so they can be solved numerically. The control volume technique works by performing the integration of the governing equations about each control volume, and then generates discretization of the equations which conserve each quantity based on control volume. Thermal boundary conditions can be defined in four different types in ANSYS Fluent: Constant heat flux, constant temperature, convection-radiation and convection. In this study, periodic variation of air temperature boundary at upper surface condition is applied, the lateral and bottom surface of the solution domain are defined as adiabatic wall type boundary condition; the pipe inner surface is taken as wall with a constant heat flux. In order to provide the periodic variation of air temperature boundary at upper surface condition a User Defined Function (UDF) was written and interpreted in ANSYS Fluent. Likewise, a UDF was also written to give constant heat flux intermittently for the pipe inner surface. Constant heat flux of 10, 20, 30 W per unit length of pipe used for calculations. Effects of distance between pipes and thermal conductivity on temperature distribution in the soil were investigated. Heat transfer in the soil is time dependent three dimensional heat conduction with dynamical boundary conditions. Temperature distribution in soil were obtained and storage effect of the soil has also been investigated. An optimization methodology based on long term simulation of GHE was suggested.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8280
Author(s):  
Jeonggyun Ham ◽  
Gonghee Lee ◽  
Dong-wook Oh ◽  
Honghyun Cho

In this study, computational fluid dynamics (CFD) analysis was performed to investigate the cause of the thermal stratification in the channel and the temperature non-uniformity of the plate heat exchanger. The flow velocity maldistribution of the channel and the merging parts caused temperature non-uniformity in the channel width direction. The non-uniformity of flow velocity and temperature in the channel is shown in Section 1 > Section 3 > Section 2 from the heat exchanger. The non-uniform temperature distribution in the channel caused channel stratification and non-uniform outlet temperature. Stratification occurred at the channel near the merging due to the flow rate non-uniformity in the channel. In particular, as the mass flow rate increased from 0.03 to 0.12 kg/s and the effectiveness increased from 0.436 to 0.615, the cold-side stratified volume decreased from 4.06 to 3.7 cm3, and the temperature difference between the stratified area and the outlet decreased from 1.21 K to 0.61 K. The increase in mass flow and the decrease in temperature difference between the cold and hot sides alleviated the non-uniformity of the outlet temperature due to the increase in effectiveness. Besides, as the inlet temperature difference between the cold and the hot side increases, the temperature non-uniformity at the outlet port is poor due to the increase in the stratified region at the channel, and the distance to obtain a uniform temperature in the outlet pipe increases as the temperature at the hot side increases.


1955 ◽  
Vol 22 (1) ◽  
pp. 119-122
Author(s):  
H. Zabronsky

Abstract Formulas are obtained for the temperature and fin efficiency of a heat exchanger consisting of round tubes with square fins. Curves are presented for the fin efficiency as a function of tube radius, all other parameters remaining fixed, and also for the temperature distribution in one particular fin.


Sign in / Sign up

Export Citation Format

Share Document