scholarly journals A Two-Scale Computational Model of pH-Sensitive Expansive Porous Media

2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Ranena V. Ponce F. ◽  
Márcio A. Murad ◽  
Sidarta A. Lima

We propose a new two-scale model to compute the swelling pressure in colloidal systems with microstructure sensitive to pH changes from an outer bulk fluid in thermodynamic equilibrium with the electrolyte solution in the nanopores. The model is based on establishing the microscopic pore scale governing equations for a biphasic porous medium composed of surface charged macromolecules saturated by the aqueous electrolyte solution containing four monovalent ions (Na+,Cl-,H+,OH-). Ion exchange reactions occur at the surface of the particles leading to a pH-dependent surface charge density, giving rise to a nonlinear Neumann condition for the Poisson–Boltzmann problem for the electric double layer potential. The homogenization procedure, based on formal matched asymptotic expansions, is applied to up-scale the pore-scale model to the macroscale. Modified forms of Terzaghi's effective stress principle and mass balance of the solid phase, including a disjoining stress tensor and electrochemical compressibility, are rigorously derived from the upscaling procedure. New constitutive laws are constructed for these quantities incorporating the pH-dependency. The two-scale model is discretized by the finite element method and applied to numerically simulate a free swelling experiment induced by chemical stimulation of the external bulk solution.

2009 ◽  
Author(s):  
William J. Likos ◽  
Masami Nakagawa ◽  
Stefan Luding

2021 ◽  
Vol 1038 ◽  
pp. 177-184
Author(s):  
Oksana Borisenko ◽  
Sergey Logvinkov ◽  
Galina Shabanova ◽  
Oksana Myrgorod

The basis of modern materials science is multicomponent systems, on their basis it is possible to create various combinations of phases in structural materials with a set of specified properties. The investigated system MgO-Al2O3-FeO-TiO2 is promising for the production of periclase-spinel refractories used as lining of rotary kilns during cement clinker firing, which are highly resistant to chemical corrosion when exposed to a gas environment and cement clinker components; thermomechanical stresses. However, in the reference literature and scientific articles, no information was found on the structure of the four-component diagram of the state of the MgO-Al2O3-FeO-TiO2 system, partial elements of its structure are given only in the composition of multicomponent systems [1-3]. Thus, research to the study of the subsolidus structure of the MgO-Al2O3-FeO-TiO2 system, which is the physicochemical basis for the development of compositions of periclase-spinel refractories, is urgent.


Solid Earth ◽  
2016 ◽  
Vol 7 (3) ◽  
pp. 727-739 ◽  
Author(s):  
Aaron Peche ◽  
Matthias Halisch ◽  
Alexandru Bogdan Tatomir ◽  
Martin Sauter

Abstract. In this case study, we present the implementation of a finite element method (FEM)-based numerical pore-scale model that is able to track and quantify the propagating fluid–fluid interfacial area on highly complex micro-computed tomography (μ-CT)-obtained geometries. Special focus is drawn to the relationship between reservoir-specific capillary pressure (pc), wetting phase saturation (Sw) and interfacial area (awn). The basis of this approach is high-resolution μ-CT images representing the geometrical characteristics of a georeservoir sample. The successfully validated 2-phase flow model is based on the Navier–Stokes equations, including the surface tension force, in order to consider capillary effects for the computation of flow and the phase-field method for the emulation of a sharp fluid–fluid interface. In combination with specialized software packages, a complex high-resolution modelling domain can be obtained. A numerical workflow based on representative elementary volume (REV)-scale pore-size distributions is introduced. This workflow aims at the successive modification of model and model set-up for simulating, such as a type of 2-phase problem on asymmetric μ-CT-based model domains. The geometrical complexity is gradually increased, starting from idealized pore geometries until complex μ-CT-based pore network domains, whereas all domains represent geostatistics of the REV-scale core sample pore-size distribution. Finally, the model can be applied to a complex μ-CT-based model domain and the pc–Sw–awn relationship can be computed.


2014 ◽  
Vol 161 (8) ◽  
pp. E3235-E3247 ◽  
Author(s):  
Akos Kriston ◽  
Andreas Pfrang ◽  
Branko N. Popov ◽  
L. Boon-Brett

SPE Journal ◽  
2012 ◽  
Vol 18 (02) ◽  
pp. 296-308 ◽  
Author(s):  
Y.. Zhou ◽  
J.O.. O. Helland ◽  
D.G.. G. Hatzignatiou

Summary It has been demonstrated experimentally that Leverett's J-function yields almost unique dimensionless drainage capillary pressure curves in relatively homogeneous rocks at strongly water-wet conditions, whereas for imbibition at mixed-wet conditions, it does not work satisfactorily because the permeability dependency on capillary pressure has been reported to be weak. The purpose of this study is to formulate a new dimensionless capillary pressure function for mixed-wet conditions on the basis of pore-scale modeling, which could overcome these restrictions. We simulate drainage, wettability alteration, and imbibition in 2D rock images by use of a semianalytical pore-scale model that represents the identified pore spaces as cross sections of straight capillary tubes. The fluid configurations occurring during drainage and imbibition in the highly irregular pore spaces are modeled at any capillary pressure and wetting condition by combining the free-energy minimization with an arc meniscus (AM)-determining procedure that identifies the intersections of two circles moving in opposite directions along the pore boundary. Circle rotation at pinned contact lines accounts for mixed-wet conditions. Capillary pressure curves for imbibition are simulated for different mixed-wet conditions in Bentheim sandstone samples, and the results are scaled by a newly proposed improved J-function that accounts for differences in formation wettability induced by different initial water saturations after primary drainage. At the end of primary drainage, oil-wet-pore wall segments are connected by many water-wet corners and constrictions that remain occupied by water. The novel dimensionless capillary pressure expression accounts for these conditions by introducing an effective contact angle that depends on the initial water saturation and is related to the wetting property measured at the core scale by means of a wettability index. The accuracy of the proposed J-function is tested on 36 imbibition capillary pressure curves for different mixed-wet conditions that are simulated with the semianalytical model in scanning-electron-microscope (SEM) images of Bentheim sandstone. The simulated imbibition capillary pressure curves and the reproduced curves, based on the proposed J-function, are in good agreement for the mixed-wet conditions considered in this study. The detailed behavior is explained by analyzing the fluid displacements occurring in the pore spaces. It is demonstrated that the proposed J-function could be applied to mixed-wet conditions to generate a family of curves describing different wetting states induced by assigning different wetting properties on the solid surfaces or by varying the initial water saturation after primary drainage. The variability of formation wettability and permeability could be described more accurately in reservoir-simulation models by means of the proposed J-function, and hence the opportunity arises for improved evaluation of core-sample laboratory experiments and reservoir performance.


SPE Journal ◽  
2009 ◽  
Vol 14 (04) ◽  
pp. 579-587 ◽  
Author(s):  
Matthew T. Balhoff ◽  
Mary F. Wheeler

Sign in / Sign up

Export Citation Format

Share Document