Effect of Roughness Orientation on the Elastohydrodynamic Lubrication Film Thickness

2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Dong Zhu ◽  
Q. Jane Wang

Effect of roughness orientation on lubricant film thickness has been an important issue of surface design, attracting much attention since the 1970 s. A systematical study, however, is still needed for various contact types in an extended range of operating conditions, especially in mixed lubrication cases with film thickness to roughness ratio (λ ratio) smaller than 0.5. The present study employs a deterministic mixed elastohydrodynamic lubrication (EHL) model to investigate the performance of lubricating films in different types of contact geometry, including the line contact, circular contact, and elliptical contacts of various ellipticity ratios. The speed range for analyzed cases covers 11 orders of magnitude so that the entire transition from full-film and mixed EHL down to dry contact (corresponding λ ratio from about 3.5 down to 0.001 or so) is simulated. Three types of machined surfaces are used, representing transverse, longitudinal, and isotropic roughness, respectively. The line contact results are compared with those from the stochastic models by Patir and Cheng (“Effect of Surface Roughness Orientation on the Central Film Thickness in EHD Contacts,” Proc. 5th Leeds-Lyon Symp. on Tribol., 1978, pp. 15–21) and the influence of roughness orientation predicted by the deterministic model is found to be less significant than that by the stochastic models, although the basic trends are about the same when λ > 0.5. The orientation effect for circular or elliptical contact problems appears to be more complicated than that for line contacts due to the existence of significant lateral flows. In circular contacts, or elliptical contacts with the ellipticity ratio smaller than one, the longitudinal roughness may become more favorable than the isotropic and transverse. Overall, the orientation effect is significant in the mixed EHL regime where theλratio is roughly in the range from 0.05 to 1.0. It is relatively insignificant for both the full-film EHL (λ > 1.2 or so) and the boundary lubrication/dry contact (λ < 0.025 ∼ 0.05).

Author(s):  
K P Baglin

Earlier work has shown that sinusoidal asperities with a circumferential lay give rise to transverse pressure ripples within the nominally smooth elastohydrodynamic pressure distribution. The ripples can become sufficiently large to cause elastic deformation of the generating asperities. This paper assumes that the deformed shape can be described using the Westergaard ‘dry contact’ analysis with the load (that, fraction of the total load contained within the pressure ripple) being unknown a priori. Solution of the Reynolds equation leads to the production of non-dimensional plots which give the extent of asperity deformation and the micro-elastohydrodynamic lubrication film thickness underneath the asperities as functions of the operating variables. It is shown that sensible lubricant films can exist between rough surfaces even as the nominal ratio of undeformed roughness/macro film thickness approaches 10. Different non-dimensional plots exist for different ‘sharpness’ asperities, defined as the ratio of amplitude/wavelength. For low values of the ratio, appropriate to roller bearings for example, Westergaard-type flat formation is appropriate over the total range of operating conditions considered. With sharper asperities, such as occur with W-N gears, the Westergaard flat is appropriate for relatively small deformations but, with increasing deformation, side lobes must form within the predicted ‘flat’. It is argued that this analysis will remain appropriate while the system is capable of producing high pressure in the valleys of the sinusoid but will become inappropriate as asperity deformation approaches the value it would have when bearing the total load.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Xiqun Lu ◽  
Qingbing Dong ◽  
Kun Zhou ◽  
Bin Zhao ◽  
Bo Zhao

In this study, a numerical model is developed for the analysis of elastohydrodynamic lubrication (EHL) at transient conditions during startup and shutdown processes. The time-dependent solutions are derived from an iterative algorithm with surface roughness involved, and the initial value is specified as the solution of the dry contact for the startup or steady-state solution of the lubrication contact at the starting velocity for the shutdown. The technique of discrete convolution and fast Fourier transform (DC-FFT) is employed to improve the computational efficiency. Solutions for smooth surfaces are compared with those obtained numerically and experimentally, and good consistency can be found. Profiles of pressure and film thickness and contours of subsurface stresses are analyzed to reveal the effects of acceleration/deceleration on the lubrication evolution. An isotropic roughness is then taken into account for the analysis. It is concluded that the coupling effects of the lubricant cavitation and oriented roughness would result in complex profiles of pressure and film thickness due to their disturbances to the lubrication film. A machined rough surface is presented to demonstrate the generality of the model. The analysis may potentially provide guidance to estimate the behavior of mechanical elements.


Author(s):  
J Lord ◽  
R Larsson

With tribology research aimed at decreasing energy consumption, two factors are inherently in focus: lubricant film thickness and traction. These factors are effectively decoupled and depend on lubricant properties which are sometimes contradictory-favourable for one factor and disadvantageous for the other. The film thickness ought to be maximized to reduce the number of asperities in contact and thus wear, whilst the traction should be minimized in order to reduce energy losses. In this experimental investigation the tested lubricants were investigated to see whether they possess beneficial properties for forming thick lubricant films under severe operating conditions while maintaining low traction forces. This is done by experimentally studying the film thickness reduction due to thermal and rheological effects for a fully flooded electrohydrodynamic lubrication (EHL) contact. The base oils tested were a naphthenic mineral VG150, a synthetic poly-α-olefin VG68 and a synthetic ester VG46. It was found that the synthetic ester maintained a relatively thicker lubricant film during sliding than the poly-α-olefin and mineral oil. The film thickness reduction for the mineral oil was greater than for the poly-α-olefin.


Author(s):  
Ton Lubrecht ◽  
Nans Biboulet ◽  
Kees Venner

The current paper highlights the contribution of the Dowson and Higginson work to numerical line contact elastohydrodynamic lubrication film thickness prediction and the Hamrock and Dowson contribution to the film thickness prediction in elliptical contacts. This paper shows that, even by today’s standards, both the numerical pressure and film thickness results and the curve-fitted film thickness predictions are very accurate. As for the elliptical results, the authors show that the original predictions remain surprisingly accurate for moderately elliptical contact. For very long elliptical contacts, their prediction does not tend to a line contact asymptote. This paper then concludes that the predicted pressure spikes by Dowson, Higginson, and Hamrock are correct in shape and amplitude, at least near pure rolling conditions.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Punit Kumar ◽  
Tapash Jyoti Kalita

Transient film thickness behavior is investigated using full elastohydrodynamic lubrication (EHL) line contact simulations during film collapse due to sudden halt and impact loading. Due attention is given to realistic shear-thinning behavior and comparisons are made with a largely ignored class of EHL lubricants that exhibit linear pressure–viscosity dependence at low pressures. The EHL film collapse is found to be governed by the piezoviscous response and the linear P–V oils exhibit rapidly collapsing EHL entrapment. Under impact loading, the transient film thickness deviates markedly from the corresponding steady-state behavior and this departure is a function of lubricant rheology.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Ning Ren ◽  
Dong Zhu ◽  
W. Wayne Chen ◽  
Yuchuan Liu ◽  
Q. Jane Wang

This paper reports the development of a novel three-dimensional (3D) deterministic model (3D L-EHL) for rough surface line-contact mixed-elastohydrodynamic lubrication (EHL) problems. This model is highly demanded because line contacts are found between many mechanical components, such as various gears, roller and needle bearings, cams and followers, and work rolls and backup rolls in metal-forming equipment. The macro aspects of a line-contact problem can be simplified into a two-dimensional (2D) model; however, the topography of contacting rough surfaces, microasperity contacts, and lubricant flows around asperities are often three-dimensional. The present model is based on Hu and Zhu’s unified 3D mixed-EHL model (Hu and Zhu, 2000, “Full Numerical Solution to the Mixed Lubrication in Point Contacts,” ASME J. Tribol., 122(1), pp. 1–9) originally developed for point contacts and the mixed fast Fourier transform (FFT)-based approach for deformation calculation formulated by Chen et al. (2008, “Fast Fourier Transform Based Numerical Methods for Elasto-Plastic Contacts With Normally Flat Surface,” ASME J. Appl. Mech., 75(1), 011022-1-11). It is numerically verified through comparisons with results from the line-contact Hertzian theory and the conventional 2D line-contact smooth-surface EHL formulas. Numerical examples involving 3D sinusoidal and digitized machined surfaces are also analyzed. Sample cases indicate that transverse roughness may yield greater film thickness than longitudinal roughness. This observation is qualitatively in agreement with the trend predicted by Patir and Cheng’s stochastic model (1978, “Effect of Surface Roughness on the Central Film Thickness in EHL Contacts,” Proceedings of the Fifth Leeds-Lyon Symposium on Tribology, London, pp. 15–21). However, the roughness orientation effect does not appear to be quantitatively as great as that shown in the work of Patir and Cheng for the same range of λ ratio.


Author(s):  
Zhihe Duan ◽  
Tonghai Wu

A line contact tribo-pair is a key mechanism unit in rolling bearings, which is often characterized by ultra-high contact pressure and ultra-thin oil film. Elastohydrodynamic lubrication is often adopted to characterize the lubrication state of such a tribo-pair. As a primary parameter for elastohydrodynamic lubrication, the oil film thickness is often evaluated with simplified theoretical models or complicated measurements. So far, a comprehensive verification of the lubrication states in a real line-contact tribo-pair, however, is rarely reported. Focusing on the roller/ring tribo-pair of a wet-lubricated rolling bearing under pure rolling conditions, this study investigates the lubrication states by integrating multiple theories. Five regions including isoviscous hydrodynamic, piezoviscous hydrodynamic, elastohydrodynamic lubrication, mixture lubrication, and boundary lubrication regions can be identified using the framework. Then, validation experiments are carried out on a line contact tribo-pair test rig under the same operating conditions applied in the theoretical analysis. The oil film thickness is measured by the ultrasonic method. The analysis results demonstrate that only two regions, the elastohydrodynamic lubrication and mixture lubrication regions, can be identified using the experimental data. The identified elastohydrodynamic lubrication and mixture lubrication regions are consistent with theoretical analysis; and the Blok equation and elastohydrodynamic lubrication theory are suggested to calculate the oil film thickness in the elastohydrodynamic lubrication and mixture lubrication regions, respectively. Moreover, the oil film thickness calculated by the Dowson equation is larger than that based on the elastohydrodynamic lubrication theory due to a different viscous pressure equation.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Wei Pu ◽  
Dong Zhu ◽  
Jiaxu Wang

In this study, a modified mixed lubrication model is developed with consideration of machined surface roughness, arbitrary entraining velocity angle, starvation, and cavitation. Model validation is executed by means of comparison between the obtained numerical results and the available starved elastohydrodynamic lubrication (EHL) data found from some previous studies. A comprehensive analysis for the effect of inlet oil supply condition on starvation and cavitation, mixed EHL characteristics, friction and flash temperature in elliptical contacts is conducted in a wide range of operating conditions. In addition, the influence of roughness orientation on film thickness and friction is discussed under different starved lubrication conditions. Obtained results reveal that inlet starvation leads to an obvious reduction of average film thickness and an increase in interasperity cavitation area due to surface roughness, which results in significant increment of asperity contacts, friction, and flash temperature. Besides, the effect of entrainment angle on film thickness will be weakened if the two surfaces operate under starved lubrication condition. Furthermore, the results show that the transverse roughness may yield thicker EHL films and lower friction than the isotropic and longitudinal if starvation is taken into account. Therefore, the starved mixed EHL model can be considered as a useful engineering tool for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document