Rotordynamics of a Two-Phase Flow Twin Screw Pump

Author(s):  
Ameen R. A. Muhammed ◽  
Dara W. Childs

Twin screw pumps are positive displacement machines. Two meshing screws connected by timing gears push the fluid trapped in the screw cavities axially from suction to discharge. Available steady state hydraulic models predict pump performance and axial pressure distribution in the chambers in single- and two-phase flow conditions. However, no model is available for their rotordynamics behavior. Due to the helix angle of the screw, the pressure distribution around the rotor is not balanced, giving rise to both static and dynamic lateral forces. The work presented here introduces a starting point for rotordynamic analysis of twin screw pumps. First, we show that the screw rotor's geometry can be represented by axisymmetric beam elements. Second, we extend the steady state hydraulic model to predict both the static and dynamic lateral forces resulting from the unbalanced pressure field. Finally, hydraulic forces are applied to the rotor to predict static, synchronous, and nonsynchronous responses. Predictions of the dynamic pressure were compared to measurements from the literature and were found to be in good agreement.

Author(s):  
Ameen R. A. Muhammed ◽  
Dara W. Childs

Twin-screw pumps are positive displacement machines. Two meshing screws connected by timing gears push the fluid trapped in the screw cavities axially from suction to discharge. Available steady state hydraulic models predict pump performance and axial pressure distribution in the chambers in single and two phase flow conditions. However, no model is available for their rotordynamics. Due to the helix angle of the screw, the pressure distribution around the rotor is not balanced; giving rise to both static and dynamic lateral forces. The work presented here introduces a starting point for rotordynamic analysis of twin screw-pumps. We first show that the screw rotors geometry can be represented by axisymmetric beam elements. Second, we extend the steady state hydraulic model to predict both the static and dynamic lateral forces resulting from the unbalanced pressure field. Finally, hydraulic forces are applied to the rotor to predict static, synchronous and nonsynchronous responses. Predictions of the dynamic pressure were compared to measurements from the literature and were found to be in good agreement.


Author(s):  
Ameen Muhammed ◽  
Dara W. Childs

In turbomachines, the transfer of energy between the rotor and the fluid does not—in theory—result in lateral forces on the rotor. In positive displacement machines, on the other hand, the transfer of energy between the moving components and the working fluid usually results in unbalanced pressure fields and forces. Muhammed and Childs (2013, “Rotordynamics of a Two-Phase Flow Twin Screw Pump,” ASME J. Eng. Gas Turbines Power, 135(6), p. 062502) developed a model to predict the dynamic forces in twin-screw pumps, showing that the helical screw shape generates hydraulic forces that oscillate at multiples of running speed. The work presented here attempts to validate the model of Muhammed and Childs (2013, “Rotordynamics of a Two-Phase Flow Twin Screw Pump,” ASME J. Eng. Gas Turbines Power, 135(6), p. 062502) using a clear-casing twin-screw pump. The pump runs in both single and multiphase conditions with exit pressure up to 300 kPa and a flow rate 0.6 l/s. The pump was instrumented with dynamic pressure probes across the axial length of the screw in two perpendicular directions to validate the dynamic model. Two proximity probes measured the dynamic rotor displacement at the outlet to validate the rotordynamics model and the hydrodynamic cyclic forces predicted by Muhammed and Childs (2013, “Rotordynamics of a Two-Phase Flow Twin Screw Pump,” ASME J. Eng. Gas Turbines Power, 135(6), p. 062502). The predictions were found to be in good agreement with the measurements. The amplitude of the dynamic pressure measurements in two perpendicular plans supported the main assumptions of the model (constant pressure inside the chambers and linear pressure drop across the screw lands). The predicted rotor orbits at the pump outlet in the middle of the rotor matched the experimental orbits closely. The spectrum of the response showed harmonics of the running speed as predicted by the model. The pump rotor's calculated critical speed was at 24.8 krpm, roughly 14 times the rotor's running speed of 1750 rpm. The measured and observed excitation frequencies extended out to nine times running speed, still well below the first critical speed. However, for longer twin-screw pumps running at higher speed, the coincidence of a higher-harmonic excitation frequency with the lightly damped first critical speed should be considered.


Author(s):  
Maral Taghva ◽  
Lars Damkilde

To protect a pressurized system from overpressure, one of the most established strategies is to install a Pressure Safety Valve (PSV). Therefore, the excess pressure of the system is relieved through a vent pipe when PSV opens. The vent pipe is also called “PSV Outlet Header”. After the process starts, a transient two-phase flow is formed inside the outlet header consisting of high speed pressurized gas interacting with existing static air. The high-speed jet compresses the static air towards the end tail of the pipe until it is discharged to the ambiance and eventually, the steady state is achieved. Here, this transient process is investigated both analytically and numerically using the method of characteristics. Riemann’s solvers and Godunov’s method are utilized to establish the solution. Propagation of shock waves and flow property alterations are clearly demonstrated throughout the simulations. The results show strong shock waves as well as high transient pressure take place inside the outlet header. This is particularly important since it indicates the significance of accounting for shock waves and transient pressure, in contrast to commonly accepted steady state calculations. More precisely, shock waves and transient pressure could lead to failure, if the pipe thickness is chosen only based on conventional steady state calculations.


2021 ◽  
Author(s):  
Ekhwaiter Abobaker ◽  
Abadelhalim Elsanoose ◽  
Mohammad Azizur Rahman ◽  
Faisal Khan ◽  
Amer Aborig ◽  
...  

Abstract Perforation is the final stage in well completion that helps to connect reservoir formations to wellbores during hydrocarbon production. The drilling perforation technique maximizes the reservoir productivity index by minimizing damage. This can be best accomplished by attaining a better understanding of fluid flows that occur in the near-wellbore region during oil and gas operations. The present work aims to enhance oil recovery by modelling a two-phase flow through the near-wellbore region, thereby expanding industry knowledge about well performance. An experimental procedure was conducted to investigate the behavior of two-phase flow through a cylindrical perforation tunnel. Statistical analysis was coupled with numerical simulation to expand the investigation of fluid flow in the near-wellbore region that cannot be obtained experimentally. The statistical analysis investigated the effect of several parameters, including the liquid and gas flow rate, liquid viscosity, permeability, and porosity, on the injection build-up pressure and the time needed to reach a steady-state flow condition. Design-Expert® Design of Experiments (DoE) software was used to determine the numerical simulation runs using the ANOVA analysis with a Box-Behnken Design (BBD) model and ANSYS-FLUENT was used to analyses the numerical simulation of the porous media tunnel by applying the volume of fluid method (VOF). The experimental data were validated to the numerical results, and the comparison of results was in good agreement. The numerical and statistical analysis demonstrated each investigated parameter’s effect. The permeability, flow rate, and viscosity of the liquid significantly affect the injection pressure build-up profile, and porosity and gas flow rate substantially affect the time required to attain steady-state conditions. In addition, two correlations obtained from the statistical analysis can be used to predict the injection build-up pressure and the required time to reach steady state for different scenarios. This work will contribute to the clarification and understanding of the behavior of multiphase flow in the near-wellbore region.


Author(s):  
Agbakwuru J ◽  
Ogunlana A ◽  
Oshagbemi O ◽  
Rahman MA ◽  
Imtiaz S

Author(s):  
S. Hasan ◽  
V. Joekar-Niasar ◽  
H. Steeb ◽  
N. Karadimitriou ◽  
J. Godinho ◽  
...  

1997 ◽  
Vol 119 (3) ◽  
pp. 457-463 ◽  
Author(s):  
H. Y. Lian ◽  
G. Noghrehkar ◽  
A. M. C. Chan ◽  
M. Kawaji

The effects of local two-phase flow parameters on the vibrational behavior of tubes have been studied in an in-line 5 × 20 tube bundle subjected to air-water cross-flow. One of the tubes was flexibly mounted and instrumented for vibration measurement and the others were rigid. Parameters obtained include local void fraction fluctuations, RMS amplitude of void fraction fluctuations, void fraction distributions across the tube bundle, flow regimes based on probability density function of void fraction signals, damping ratio, and tube vibration response as a function of mass flux, void fraction and dynamic pressure. Damping and tube vibration amplitude in two-phase flow have been found to be closely related to the RMS amplitudes of the local void fraction fluctuations and dynamic pressure fluctuations, respectively.


Sign in / Sign up

Export Citation Format

Share Document