Numerical Investigations on the Heat Transfer Behavior of Brush Seals Using Combined Computational Fluid Dynamics and Finite Element Method

2013 ◽  
Vol 135 (12) ◽  
Author(s):  
Bo Qiu ◽  
Jun Li

Brush seals have been applied in more and more challenging high-temperature locations. The high speed bristle-rotor friction causes a considerable heat generation which accelerates the bristles wear. The frictional heat generation at bristle-rotor interface becomes another major concern in brush seal applications. This study presented detailed investigations on the heat transfer characteristics and contact mechanics of brush seals using a combined computational fluid dynamics (CFD) and finite element method (FEM) brush seal model. The CFD model of brush seal for mass and heat transfer employed Reynolds-averaged Navier–Stokes (RANS) solutions coupled with non-Darcian porous medium approach. The nonlinear contact model of brush seal was established using FEM with considerations of internal frictions (bristle to rotor, bristle to backing plate, and bristle to bristle) and aerodynamic loads on bristles. The numerical method involved iterations between CFD and FEM models to better evaluate the heat transfer behaviors of the brush seal with consideration of bristle deflections. The frictional heat generation was calculated from the product of bristle-rotor frictional force and sliding velocity. The bristle deflections and temperature distributions of the brush seal were predicted at various operational conditions using the iterative CFD and FEM brush seal model. The effects of pressure differential and rotational speed on the contact behavior, temperature distribution and bristle maximum temperature of brush seals were numerically investigated using the developed approach. The detailed pressure contours and streamline distributions of the brush seal were also illustrated.

Author(s):  
Bo Qiu ◽  
Jun Li ◽  
Zhenping Feng

As a type of contacting seal technology, brush seals provide superior sealing performance and flexible behavior. Brush seals have found increasing application in more challenging high-temperature locations in recent years. Thus, the frictional heat generation between the seal bristles and mating surfaces is becoming another major concern for stable operation of brush seals. This study presents detailed investigations on the conjugate heat transfer behavior of brush seals using Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) approaches. A dual-energy equation was proposed to describe the conjugate heat transfer in the porous bristle pack region under local thermal non-equilibrium conditions. The heat transfer CFD model was established with consideration of anisotropic thermal conductivity and a radius-dependent porosity of the bristle pack. The frictional heat generation was calculated from the product of the bristle-rotor frictional force and sliding velocity. The bristle-rotor frictional force was obtained from the brush seal FEM model with consideration of internal friction and aerodynamic load on the bristles. The temperature distribution of the brush seal was predicted at various operational conditions using the iterative CFD and FEM brush seal model. The effects of pressure ratios and rotational speeds on the temperature distribution and bristle maximum temperature of the brush seal were investigated based on the developed numerical approach. The effect of frictional heat generation on brush seal leakage was also analyzed.


Author(s):  
M. Raben ◽  
J. Friedrichs ◽  
J. Flegler

Sealing technology is a key feature to improve efficiency of steam turbines for both new power stations and modernization projects. One of the most powerful sealing alternatives for reducing parasitic leakages in the blade path of a turbine as well as in shaft sealing areas is the use of brush seals, which are also widely used in gas turbines and turbo compressors. The advantage of brush seals over other sealing concepts is based on the narrow gap that is formed between the brush seal bristle tips and the mating rotor surface together with its radial adaptivity. While the narrow gap between the bristle tips and the rotor leads to a strongly decreased flow through the seal compared with conventional turbomachinery seals, it is important to be aware of the tight gap that can be bridged by relative motion between the rotor and the brush seal, leading to a contact of the bristles and the rotor surface. Besides abrasive wear occurrence, the friction between the bristles and the rotor leads to heat generation which can be detrimental to turbine operation due to thermal effects, leading to rotor bending connected to increasing shaft vibrations. In order to investigate the frictional heat generation of brush seals, different investigation concepts have been introduced through the past years. To broaden the knowledge about frictional heat generation and to make it applicable for steam turbine applications, a new testing setup was designed for the steam test rig of the Institute of Jet Propulsion and Turbomachinery - TU Braunschweig, Germany, enabling temperature measurements in the rotor body under stationary and transient operation in steam by using rotor-integrated thermocouples. Within this paper, the development of the instrumented new rotor design and all relevant parts of the new testing setup is shown along with the testing ability by means of the validation of the test rig concept and the achieved measurement accuracy. First results prove that the new system can be used to investigate frictional heat generation of brush seals under conditions relevant for steam turbine shaft seals.


Author(s):  
Markus Raben ◽  
Jens Friedrichs ◽  
Johan Flegler

Sealing technology is a key feature to improve efficiency of steam turbines for both new power stations and modernization projects. One of the most powerful sealing alternatives for reducing parasitic leakages in the blade path of a turbine as well as in shaft sealing areas is the use of brush seals, which are also widely used in gas turbines and turbo compressors. The advantage of brush seals over other sealing concepts is based on the narrow gap that is formed between the brush seal bristle tips and the mating rotor surface together with its radial adaptivity. While the narrow gap between the bristle tips and the rotor leads to a strongly decreased flow through the seal compared with conventional turbomachinery seals, it is important to be aware of the tight gap that can be bridged by relative motion between the rotor and the brush seal, leading to a contact of the bristles and the rotor surface. Besides abrasive wear occurrence, the friction between the bristles and the rotor leads to heat generation which can be detrimental to turbine operation due to thermal effects, leading to rotor bending connected to increasing shaft vibrations. In order to investigate the frictional heat generation of brush seals, different investigation concepts have been introduced through the past years. To broaden the knowledge about frictional heat generation and to make it applicable for steam turbine applications, a new testing setup was designed for the steam test rig of the Institute of Jet Propulsion and Turbomachinery—TU Braunschweig, Germany, enabling temperature measurements in the rotor body under stationary and transient operation in steam by using rotor-integrated thermocouples. Within this paper, the development of the instrumented new rotor design and all relevant parts of the new testing setup is shown along with the testing ability by means of the validation of the test rig concept and the achieved measurement accuracy. First results prove that the new system can be used to investigate frictional heat generation of brush seals under conditions relevant for steam turbine shaft seals.


Author(s):  
Lilas Deville ◽  
Mihai Arghir

Brush seals are a mature technology that has generated extensive experimental and theoretical work. Theoretical models range from simple correlations with experimental results to advanced numerical approaches coupling the bristles deformation with the flow in the brush. The present work follows this latter path. The bristles of the brush are deformed by the pressure applied by the flow, by the interference with the rotor and with the back plate. The bristles are modeled as linear beams but a nonlinear numerical algorithm deals with the interferences. The brush with its deformed bristles is then considered as an anisotropic porous medium for the leakage flow. Taking into account, the variation of the permeability with the local geometric and flow conditions represents the originality of the present work. The permeability following the principal directions of the bristles is estimated from computational fluid dynamics (CFD) calculations. A representative number of bristles are selected for each principal direction and the CFD analysis domain is delimited by periodicity and symmetry boundary conditions. The parameters of the CFD analysis are the local Reynolds number and the local porosity estimated from the distance between the bristles. The variations of the permeability are thus deduced for each principal direction and for Reynolds numbers and porosities characteristic for brush seal. The leakage flow rates predicted by the present approach are compared with experimental results from the literature. The results depict also the variations of the pressures, of the local Reynolds number, of the permeability, and of the porosity through the entire brush seal.


2019 ◽  
Vol 17 (02) ◽  
pp. 1850130 ◽  
Author(s):  
Daniel Duque ◽  
Pep Español

In computational fluid dynamics there have been many attempts to combine the advantages of having a fixed mesh, on which to carry out spatial calculations, with using particles moving according to the velocity field. These ideas in fact go back to particle-in-cell methods, proposed about 60 years ago. Of course, some procedure is needed to transfer field information between particles and mesh. There are many possible choices for this “assignment”, or “projection”. Several requirements may guide this choice. Two well-known ones are conservativity and stability, which apply to volume integrals of the fields. An additional one is here considered: preservation of information. This means that assignment from the particles onto the mesh and back should yield the same field values when the particles and the mesh coincide in position. The resulting method is termed “mass” assignment, due to its strong similarities with the finite element method. Several procedures are tested, including the well-known FLIP, on three scenarios: simple 1D convection, 2D convection of Zalesak’s disk, and a CFD simulation of the Taylor–Green periodic vortex sheet. Mass assignment is seen to be clearly superior to other methods.


2005 ◽  
Vol 128 (3) ◽  
pp. 599-609 ◽  
Author(s):  
Yahya Dogu ◽  
Mahmut F. Aksit

Brush seals are designed to survive transient rotor rubs. Inherent brush seal flexibility reduces frictional heat generation. However, high surface speeds combined with thin rotor sections may result in local hot spots. Considering large surface area and accelerated oxidation rates, frictional heat at bristle tips is another major concern especially in challenging high-temperature applications. This study investigates temperature distribution in a brush seal as a function of frictional heat generation at bristle tips. The two-dimensional axisymmetric computational fluid dynamics (CFD) analysis includes the permeable bristle pack as a porous medium allowing fluid flow throughout the bristle matrix. In addition to effective flow resistance coefficients, isotropic effective thermal conductivity as a function of temperature is defined for the bristle pack. Employing a fin approach for a single bristle, a theoretical analysis has been developed after outlining the brush seal heat transfer mechanism. Theoretical and CFD analysis results are compared. To ensure coverage for various seal designs and operating conditions, several frictional heat input cases corresponding to different seal stiffness values have been studied. Frictional heat generation is outlined to introduce a practical heat flux input into the analysis model. Effect of seal stiffness on nominal bristle tip temperature has been evaluated. Analyses show a steep temperature rise close to bristle tips that diminishes further away. Heat flux conducted through the bristles dissipates into the flow by a strong convection at the fence-height region.


Author(s):  
Yahya Dogu ◽  
Ahmet S. Bahar ◽  
Mustafa C. Sertçakan ◽  
Altuğ Pişkin ◽  
Ercan Arıcan ◽  
...  

Brush seals require custom design and tailoring due to their behavior driven by flow dynamic, which has many interacting design parameters, as well as their location in challenging regions of turbomachinery. Therefore, brush seal technology has not reached a conventional level across the board standard. However, brush seal geometry generally has a somewhat consistent form. Since this consistent form does exist, knowledge of the leakage performance of brush seals depending on specific geometric dimensions and operating conditions is critical and predictable information in the design phase. However, even though there are common facts for some geometric dimensions available to designers, open literature has inadequate quantified information about the effect of brush seal geometric dimensions on leakage. This paper presents a detailed computational fluid dynamics (CFD) investigation quantifying the leakage values for some geometric variables of common brush seal forms functioning in some operating conditions. Analyzed parameters are grouped as follows: axial dimensions, radial dimensions, and operating conditions. The axial dimensions and their ranges are front plate thickness (z1 = 0.040–0.150 in.), distance between front plate and bristle pack (z2 = 0.010–0.050 in.), bristle pack thickness (z3 = 0.020–0.100 in.), and backing plate thickness (z4 = 0.040–0.150 in.). The radial dimensions are backing plate fence height (r1 = 0.020–0.100 in.), front plate fence height (r2 = 0.060–0.400 in.), and bristle free height (r3 = 0.300–0.500 in.). The operating conditions are chosen as clearance (r0 = 0.000–0.020 in.), pressure ratio (Rp = 1.5–3.5), and rotor speed (n = 0–40 krpm). CFD analysis was carried out by employing compressible turbulent flow in 2D axisymmetric coordinate system. The bristle pack was treated as a porous medium for which flow resistance coefficients were calibrated by using literature based test data. Selected dimensional and operational parameters for a common brush seal form were investigated, and their effects on leakage performance were quantified. CFD results show that, in terms of leakage, the dominant geometric dimensions were found to be the bristle pack thickness and the backing plate fence height. It is also clear that physical clearance dominates leakage performance, when compared to the effects of other geometric dimensions. The effects of other parameters on brush seal leakage were also analyzed in a comparative manner.


1994 ◽  
Vol 18 (11) ◽  
pp. 1083-1105 ◽  
Author(s):  
W. G. Habashi ◽  
M. Robichaud ◽  
V.-N. Nguyen ◽  
W. S. Ghaly ◽  
M. Fortin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document