front plate
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 8)

H-INDEX

5
(FIVE YEARS 0)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7768
Author(s):  
Yuxin Liu ◽  
Benzhuang Yue ◽  
Xiaozhi Kong ◽  
Hua Chen ◽  
Huawei Lu

Advanced brush seal technology has a significant impact on the performance and efficiency of gas turbine engines. However, in highly inlet swirling environments, the bristles of a brush seal tend to circumferentially slip, which may lead to aerodynamic instability and seal failure. In this paper, seven different front plate geometries were proposed to reduce the impact of high inlet swirl on the bristle pack, and a three-dimensional porous medium model was carried out to simulate the brush seal flow characteristics. Comparisons of a plane front plate with a relief cavity, plane front plate with axial drilled holes, anti-“L”-type plate and their relative improved configurations on the pressure and flow fields as well as the leakage behavior were conducted. The results show that the holed front plate can effectively regulate and control the upstream flow pattern of the bristle pack, inducing the swirl flow to move radially inward, which results in decreased circumferential velocity component. The anti-“L” plate with both axial holes and one radial hole was observed to have the best effect on reducing the swirl of those investigated. The swirl velocity upstream the bristle pack can decline 50% compared to the baseline model with plane front plate, and the circumferential aerodynamic forces on the bristles, which scale with the swirl dynamic head, are reduced by a factor of 4. This could increase the bristle stability dramatically. Moreover, the front plate geometry does not influence the leakage performance significantly, and the application of the axial hole on the front plate will increase the leakage slightly by around 3.5%.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1229
Author(s):  
Hao Zhang ◽  
Haifu Wang ◽  
Qingbo Yu ◽  
Yuanfeng Zheng ◽  
Guancheng Lu ◽  
...  

Perforation behavior of 3 mm/3 mm double-spaced aluminum plates by PTFE/Al/W (Polytetrafluoroethylene/Aluminum/Tungsten) reactive projectiles with densities ranging from 2.27 to 7.80 g/cm3 was studied experimentally and theoretically. Ballistic experiments show that the failure mode of the front plate transforms from petalling failure to plugging failure as projectile density increases. Theoretical prediction of the critical velocities for the reactive projectiles perforating the double-spaced plates is proposed, which is consistent with the experimental results and well represents the perforation performance of the projectiles. Dimensionless formulae for estimating the perforation diameter and deflection height of the front plates are obtained through dimensional analysis, indicating material density and strength are dominant factors to determine the perforation size. High-speed video sequences of the perforation process demonstrate that high-density reactive projectiles make greater damage to the rear plates because of the generation of projectile debris streams. Specifically, the maximum spray angle of the debris streams and the crater number in the debris concentration area of the rear plate both increase with the projectile density and initial velocity.


Author(s):  
S.V. Mosolov ◽  
I.S. Partola ◽  
A.S. Kudinov ◽  
I.I. Yurchenko ◽  
A.G. Klimenko ◽  
...  

The paper introduces the results of measuring and predicting the heat and force effect of jets of high-temperature reacting mixtures on the oxygen-methane, oxygen-alcohol components when acting on the front plate in the near field of the jet. A high-temperature supersonic gas jet flows out of a model chamber with a Laval nozzle into a medium with atmospheric pressure at a degree of off-design ratio of about unity. In the chamber, ignition and stable combustion of a mixture of selected substances occur, the ratio of these substances providing a stagnation temperature in the range of 1900 ... 3400 K. The pressure distribution function on the front plate obtained in the experiment is used. The proposed model of the high-temperature flow effect on the frontal surface can be used to test software systems and determine the levels of thermal effect during sample tests.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Yuxin Liu ◽  
John W. Chew ◽  
Michael J. Pekris ◽  
Xiaozhi Kong

Abstract This paper considers three-dimensional (3D) computational fluid dynamics (CFD) and structural modeling of brush seals, and investigates the effects of inlet swirl on the bristle pack. The model couples aerodynamic forces generated by CFD to a structural model that includes interaction between bristles. At a critical value of inlet swirl, aerodynamic forces cause circumferential slip of the upstream bristle row. In practice, this may lead to instability of the bristle pack and is consistent with anecdotal reports of seal behavior. The critical swirl velocity was reduced when the downstream pressure level was raised, keeping the same upstream total to downstream static pressure difference. This is caused by the increased dynamic head associated with the inlet swirl. Inclusion of a front plate in the seal design does not offer the intended protection to the bristle pack in highly swirling environments. This is associated with highly swirling flow impinging on the bristle tips. Fitting of roughness elements on the upstream face of the front plate could improve stability by reducing swirl of the flow impacting on the bristles. Increasing the bristle diameter and bristle stiffness does not necessarily prevent slip at higher inlet swirl velocities, but reduces the magnitude of slip of the upstream bristles.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 292-302
Author(s):  
Jianya Yi ◽  
Zhijun Wang ◽  
Jianping Yin ◽  
Zhimin Zhang

AbstractIn this study, a new damage mode for the explosive reactive armour (ERA) of a shaped charge jet was proposed. The response characteristics of polytetrafluoroethylene (PTFE) and polyamide (PA) polymer jet impact on the ERA were analysed. The expansion degree and the diameter of the PTFE jet are larger than those of the PA jet, but the compactness of the PTFE jet head is lower than that of the PA jet, resulting in different impact pressures of the different polymer expansive jets on the target. The PTFE jet achieved the penetration without initiation of the ERA at different standoffs, while the PA jet directly detonated the sandwich charge when impacting the ERA vertically and failed to penetrate the front plate when impacting the ERA at 68°. With the increase of standoff, the reaction degree of the PTFE jet to the ERA decreased gradually, and the aperture of the front plate did not change.


Author(s):  
Yuxin Liu ◽  
John W. Chew ◽  
Michael J. Pekris ◽  
Xiaozhi Kong

Abstract This paper considers 3D CFD and structural modelling of brush seals, and investigates the effects of inlet swirl on the bristle pack. The model couples aerodynamic forces generated by CFD to a structural model that includes interaction between bristles. At a critical value of inlet swirl, aerodynamic forces cause circumferential slip of the upstream bristle row. In practice this may lead to instability of the bristle pack and is consistent with anecdotal reports of seal behavior. The critical swirl velocity was reduced when the downstream pressure level was raised, keeping the same upstream total to downstream static pressure difference. This is caused by the increased dynamic head associated with the inlet swirl. Inclusion of a front plate in the seal design does not offer the intended protection to the bristle pack in highly swirling environments. This is associated with highly swirling flow impinging on the bristle tips. Fitting of roughness elements on the upstream face of the front plate could improve stability by reducing swirl of the flow impacting on the bristles. Increasing the bristle diameter and bristle stiffness does not necessarily prevent slip at higher inlet swirl velocities, but reduces the magnitude of slip of the upstream bristles.


Author(s):  
Michihisa Shiiba ◽  
Mayu Yahagi ◽  
Takeshi Morishita ◽  
Nagaya Okada ◽  
Minoru K. Kurosawa ◽  
...  
Keyword(s):  

2018 ◽  
Vol 183 ◽  
pp. 01045
Author(s):  
Pierre Pradel ◽  
Frédéric Malaise ◽  
Thibaut de Rességuier

Polymeric foams are widely used in many industrial fields as thermal insulators, structural materials or shock wave mitigators. Polymeric foams would be valuable candidates to protect structures against intense mechanical stress wave loadings generated by laser irradiation or high velocity impact of very small debris. This article presents the results of laser-driven shock experiments performed on polymeric foams to investigate their mitigation ability. The targets consisted of thin aluminum front plate (250 μm-thickness), 1 mm and 2 mm-thick samples made of expanded polyurethane foam (320 kg/m3) or syntactic epoxy foam (624 kg/m3), and 12 μm-thick aluminum foil. The laser beam provided 20 J in 25 ns and was shot through water confinement of the front plate. The dynamic responses of the foams were investigated by measuring time-velocity profiles at the rear surface. Preliminary tests were performed on thin aluminum plate in order to calibrate the stress wave loadings. A dynamic explicit one-dimensional hydrocode was used to simulate the experiments and validate the calibration of pressure generated under laser irradiation. Then, the numerical simulations were used to analyze the velocity profiles recorded at the rear surface of both foams. The dynamic macroscopic response of the foams was described by a phenomenological compaction model. The model has been validated by numerical correlations with the experimental results. The input pressure (front aluminum plate) and the output one (fictitious PMMA plate placed behind foam samples) were compared by help of numerical simulations. The ratio between input and output pressures could achieve 75. Polyurethane foam better mitigated shock waves below 2 GPa, and epoxy foam was better above 2 GPa.


Sign in / Sign up

Export Citation Format

Share Document