Evaluating Constant DC-Link Operation of Wave Energy Converter

Author(s):  
Rickard Ekström ◽  
Venugopalan Kurupath ◽  
Cecilia Boström ◽  
Rafael Waters ◽  
Mats Leijon

A wave energy converter (WEC) based on a linear generator and a point-absorbing buoy has been developed at Uppsala University. Interconnecting an array of WECs in parallel requires a point of common coupling, such as a common dc-bus. The dc voltage level seen by the generator is directly linked to the electromagnetic damping of the generator. A lower dc-level results in a higher damping factor and is important for increased absorption of the wave power. The drawback is increased losses in generator windings and cable resistance. There will be an optimal dc-level for maximum power output. This is a function of not only generator and buoy characteristics, but the current sea state. Experimental results of the full-scale system have been carried out, and used as validation of a simulation model of the system. The model is then used to evaluate how the dc-level seen by the generator influence the power output. The results indicate that higher dc-levels should be used at higher sea states, and power output may vary by up to a factor five depending on which dc-level is chosen.

Author(s):  
Rickard Ekström ◽  
Venugopalan Kurupath ◽  
Cecilia Boström ◽  
Rafael Waters ◽  
Olle Svensson ◽  
...  

A Wave Energy Converter (WEC) based on a linear generator and a point-absorbing buoy has been developed at Uppsala University. Interconnecting an array of WECs in parallel requires a point of common coupling, such as a common DC-bus. The DC voltage level seen by the generator is directly linked to the electromagnetic damping of the generator. A lower DC-level results in a higher damping factor and is important for increased absorption of the wave power. The drawback is increased losses in generator windings and cable resistance. There will be an optimal DC-level for maximum power output. This is a function of not only generator and buoy characteristics, but the current sea state. Experimental results of the full-scale system have been carried out, and used as validation of a simulation model of the system. The model is then used to evaluate how the DC-level seen by the generator influence the power output. The results indicate that higher DC-levels should be used at higher sea states, and power output may vary by up to a factor five depending on which DC-level is chosen.


Author(s):  
Eric Thacher ◽  
Helen Bailey ◽  
Bryson Robertson ◽  
Scott Beatty ◽  
Jason Goldsworthy ◽  
...  

In the field of wave energy converter control, high fidelity numerical models have become the predominant tool for the development of accurate and comprehensive control strategies. In this study, a numerical model of a novel wave energy converter, employing a pneumatic power take-off, is created to provide a low-cost method for the development of a power-maximizing control strategy. Device components and associated architectures are developed in the time domain solvers Proteus DS and MATLAB/Simulink. These two codes are dynamically coupled at run time to produce a complete six degree of freedom, time domain simulation of the converter. Utilizing this numerical framework, a genetic algorithm optimization procedure is implemented to optimally select eight independent parameters governing the PTO geometry. Optimality is measured in terms of estimated annual energy production at a specific deployment location off the West Coast of Canada. The optimization exercise is one layer of PTO force control — the parameters selected are seen to provide significant improvements in the annual power output, while also smoothing the WEC power output on both a sea-state by sea-state and wave-by-wave basis.


2021 ◽  
Author(s):  
Mojtaba Kamarlouei ◽  
Thiago S. Hallak ◽  
Jose F. Gaspar ◽  
Miguel Calvário ◽  
C. Guedes Soares

Abstract This paper presents the adaptation of a torus wave energy converter prime mover to an onshore or nearshore fixed platform, by a hinged arm. An optimization code is developed to obtain the best torus and arm geometry, as well as the power take-off parameters, taking as objective function the maximization of total wave absorbed power. In this paper, the power take-off system is modelled as a simplified damper and spring system, where the parameters are optimized for the phase control of the wave energy converter in each sea state, whereas the optimization process is performed with a genetic algorithm. Finally, the optimal result for the productive sea state indicates that the absorbed power is relatively considerable while a better survivability performance is expected from a torus wave energy converter compared to a conventional truncated prime mover.


2018 ◽  
Vol 122 ◽  
pp. 654-664 ◽  
Author(s):  
J.P.P.G. Lopes de Almeida ◽  
B. Mujtaba ◽  
A.M. Oliveira Fernandes

Author(s):  
Takeshi Kamio ◽  
Makoto Iida ◽  
Chuichi Arakawa

The purpose of this study is the numerical simulation and control optimization of a wave energy converter to estimate the power at a test site in the Izu Islands. In Japan, ocean energy is once again being seriously considered; however, since there are many inherent problems due to severe conditions such as the strong swells and large waves, estimations are important when designing such devices. The numerical simulation method in this study combines the wave interaction analysis software WAMIT and an in-house time-domain simulation code using the Newmark-β method, and introduces approximate complex-conjugate control into the code. The optimized parameters were assessed for a regular sine wave and an irregular wave with a typical wave spectrum. With the optimized parameters, average and maximum output power were estimated for the observed wave data at the test site. The results show a more than 100 kW average power output and a several times larger maximum power output.


2020 ◽  
Vol 8 (4) ◽  
pp. 289 ◽  
Author(s):  
Vincent S. Neary ◽  
Seongho Ahn ◽  
Bibiana E. Seng ◽  
Mohammad Nabi Allahdadi ◽  
Taiping Wang ◽  
...  

Best practices and international standards for determining n-year return period extreme wave (sea states) conditions allow wave energy converter designers and project developers the option to apply simple univariate or more complex bivariate extreme value analysis methods. The present study compares extreme sea state estimates derived from univariate and bivariate methods and investigates the performance of spectral wave models for predicting extreme sea states at buoy locations within several regional wave climates along the US East and West Coasts. Two common third-generation spectral wave models are evaluated, a WAVEWATCH III® model with a grid resolution of 4 arc-minutes (6–7 km), and a Simulating WAves Nearshore model, with a coastal resolution of 200–300 m. Both models are used to generate multi-year hindcasts, from which extreme sea state statistics used for wave conditions characterization can be derived and compared to those based on in-situ observations at National Data Buoy Center stations. Comparison of results using different univariate and bivariate methods from the same data source indicates reasonable agreement on average. Discrepancies are predominantly random. Large discrepancies are common and increase with return period. There is a systematic underbias for extreme significant wave heights derived from model hindcasts compared to those derived from buoy measurements. This underbias is dependent on model spatial resolution. However, simple linear corrections can effectively compensate for this bias. A similar approach is not possible for correcting model-derived environmental contours, but other methods, e.g., machine learning, should be explored.


Author(s):  
Magnus Stålberg ◽  
Rafael Waters ◽  
Oskar Danielsson ◽  
Mats Leijon

The first offshore prototype of a wave energy converter system has been launched off the Swedish west coast. The concept is based on a point absorber directly coupled to a linear generator located on the ocean floor. The wave energy converter is part of a research project that will study the electric system of ten units forming a small farm of wave power plants as they are linked and connected to an electric grid. A full scale farm will consist of a large number of interconnected units. The chosen direct drive system reduces the mechanical complexity of the converter but has repercussions on the electric system. The output from the generator will vary with the speed of the point absorber, leading to large fluctuations of power on the second scale. This has implications on both the individual generator and on the system as a whole. The hydrodynamic behavior of the point absorber depends, to a large extent, on the damping of the generator. The damping, in turn, can be remotely controlled by changing the load resistance. It has previously been shown that this has a large influence on the power absorbed by the wave energy converter. This paper investigates the peak power, the translator speed, and the variance of the power at different sea states and for different levels of damping. The peak power has an impact on the design of the generator and the required ability, for a single unit, to handle electric overloads. The momentum of the translator is directly proportional to its speed. The speed is thus important for the design of the end stop. The variance of the power of one unit will have an impact on the farm system behavior. The study is based on two and a half months of experimental measurements on the prototype wave energy converter and a wave measurement buoy. The aim is to analyze whether load control strategies may influence the dimensioning criteria for the electric system and the generator. The results are compared to previously investigated relationships between the absorbed mean power and the load resistance as a function of sea state. In the study, it was found that the maximum power is approximately proportional to the average power, while the maximum translator speed and standard deviation decrease as the damping factor is increased.


Author(s):  
Marie-Aure´lie Kerbiriou ◽  
Marc Prevosto ◽  
Christophe Maisondieu ◽  
Aure´lien Babarit ◽  
Alain Cle´ment

Sea-states are usually described by a single set of 5 parameters, no matter the actual number of wave systems they contain. We present an original numerical method to extract from directional spectra the significant systems constituting of a complex sea-state. An accurate description of the energy distribution is then given by multiple sets of parameters. We use these results to assess the wave climatology in the Bay of Biscay and to estimate the power harnessable in this area by a particular Wave Energy Converter, the SEAREV. Results show that the fine description of sea-states yields a better assessment of the instantaneous device response. The discrepancy between the classical and multi-sets descriptions show that the new one is preferable for the assessment of harnessable power and for device design.


Sign in / Sign up

Export Citation Format

Share Document