A Modular Design Approach to Improve Product Life Cycle Performance Based on the Optimization of a Closed-Loop Supply Chain

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Wu-Hsun Chung ◽  
Gül E. Okudan Kremer ◽  
Richard A. Wysk

As environmental concerns have grown in recent years, the interest in product design for the life cycle (DFLC) has exhibited a parallel surge. Modular design has the potential to bring life cycle considerations into the product architecture decision-making process, yet most current modular design methods lack the capability for assessing module life cycle consequences in a supply chain. This paper proposes a method for product designers, called the architecture and supply chain evaluation method (ASCEM), to find a product modular architecture with both low life cycle costs and low energy consumption at the early design stages. ASCEM expands the assessment scope from the product's architecture to its supply chain network. This work analyzes the life cycle costs (LCCs) and energy consumption (LCEC) of two products designated within the European Union's directive on waste of electric and electronic equipment (WEEE) within a closed-loop supply chain to identify the most beneficial modular structure. In addition, data on 27 theoretical cases representing various products are analyzed to show the broader applicability of the proposed methodology. Our analysis shows that ASCEM can efficiently identify a good-quality modular structure having low LCC and LCEC in a closed-loop supply chain for both the two tested products and the hypothetical cases.

Author(s):  
Wuhsun Chung ◽  
Gu¨l E. Okudan ◽  
Richard A. Wysk

Growing concerns for the environment should make every designer more carefully consider product design for the life cycle (DFLC). Although modularity is recognized for its potential to incorporate life cycle considerations into product architecture design, most modular design methods in the literature concentrate on generating highly-modular product architectures but lack the capability for assessing life cycle consequences of these modules in a supply chain. This paper proposes a methodology to find a robust modular architecture with minimal life cycle costs and environmental impacts at the design configuration stage. The objective of the proposed methodology is not to maximize modularity, but to adopt life cycle costing and life cycle assessment of a product in a closed-loop supply chain to identify the most beneficial modular structure. Further, capacity influence of the existing processing facilities in the supply chain on life cycle costs and environmental impacts is evaluated and discussed in this paper.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saman Esmaeilian ◽  
Dariush Mohamadi ◽  
Majid Esmaelian ◽  
Mostafa Ebrahimpour

Purpose This paper aims to minimize the total carbon emissions and costs and also maximize the total social benefits. Design/methodology/approach The present study develops a mathematical model for a closed-loop supply chain network of perishable products so that considers the vital aspects of sustainability across the life cycle of the supply chain network. To evaluate carbon emissions, two different regulating policies are studied. Findings According to the obtained results, increasing the lifetime of the perishable products improves the incorporated objective function (IOF) in both the carbon cap-and-trade model and the model with a strict cap on carbon emission while the solving time increases in both models. Moreover, the computational efficiency of the carbon cap-and-trade model is higher than that of the model with a strict cap, but its value of the IOF is worse. Results indicate that efficient policies for carbon management will support planners to achieve sustainability in a cost-effectively manner. Originality/value This research proposes a mathematical model for the sustainable closed-loop supply chain of perishable products that applies the significant aspects of sustainability across the life cycle of the supply chain network. Regional economic value, regional development, unemployment rate and the number of job opportunities created in the regions are considered as the social dimension.


Kybernetes ◽  
2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hanieh Shambayati ◽  
Mohsen Shafiei Nikabadi ◽  
Seyed Mohammad Ali Khatami Firouzabadi ◽  
Mohammad Rahmanimanesh ◽  
Sara Saberi

PurposeSupply chains (SCs) have been growingly virtualized in response to the market challenges and opportunities that are presented by new and cost-effective internet-based technologies today. This paper designed a virtual closed-loop supply chain (VCLSC) network based on multiperiod, multiproduct and by using the Internet of Things (IoT). The purpose of the paper is the optimization of the VCLSC network.Design/methodology/approachThe proposed model considers the maximization of profit. For this purpose, costs related to virtualization such as security, energy consumption, recall and IoT facilities along with the usual costs of the SC are considered in the model. Due to real-world demand fluctuations, in this model, demand is considered fuzzy. Finally, the problem is solved using the Grey Wolf algorithm and Firefly algorithm. A numerical example and sensitivity analysis on the main parameters of the model are used to describe the importance and applicability of the developed model.FindingsThe findings showed that the Firefly algorithm performed better and identified more profit for the SC in each period. Also, the results of the sensitivity analysis using the IoT in a VCLSC showed that the profit of the virtual supply chain (VSC) is higher compared to not using IoT due to tracking defective parts and identifying reversible products. In proposed model, chain members can help improve chain operations by tracking raw materials and products, delivering products faster and with higher quality to customers, bringing a new level of SC efficiency to industries. As a result, VSCs can be controlled, programmed and optimized remotely over the Internet based on virtual objects rather than direct observation.Originality/valueThere are limited researches on designing and optimizing the VCLSC network. This study is one of the first studies that optimize the VSC networks considering minimization of virtual costs and maximization of profits. In most researches, the theory of VSC and its advantages have been described, while in this research, mathematical optimization and modeling of the VSC have been done, and it has been tried to apply SC virtualization using the IoT. Considering virtual costs in VSC optimization is another originality of this research. Also, considering the uncertainty in the SC brings the issue closer to the real world. In this study, virtualization costs including security, recall and energy consumption in SC optimization are considered.HighlightsInvestigates the role of IoT for virtual supply chain profit optimization and mathematical optimization of virtual closed-loop supply chain (VCLSC) based on multiperiod, multiproduct with emphasis on using the IoT under uncertainty.Considering the most important costs of virtualization of supply chain include: cost of IoT information security, cost of IoT energy consumption, cost of recall the production department, cost of IoT facilities.Selection of the optimal suppliers in each period and determination of the price of each returned product in virtual supply chain.Solving and validating the proposed model with two meta-heuristic algorithms (the Grey Wolf algorithm and Firefly algorithm).


Sign in / Sign up

Export Citation Format

Share Document