Numerical Analysis of Flow in a Transonic Compressor With a Single Circumferential Casing Groove: Influence of Groove Location and Depth on Flow Instability

2013 ◽  
Vol 136 (3) ◽  
Author(s):  
Yasunori Sakuma ◽  
Toshinori Watanabe ◽  
Takehiro Himeno ◽  
Dai Kato ◽  
Takeshi Murooka ◽  
...  

The effect of circumferential single grooved casing treatment on the stability enhancement of NASA Rotor 37 has been examined with computational fluid dynamics analysis. Stall inception mechanism of Rotor 37 is presented first with principal focus on the tip leakage flow behavior, passage blockage, and the vortical flow structures. Detailed observation showed that the combined interaction of the stagnated flow of tip leakage vortex breakdown and the jetlike leakage flow from the midchord region leads to the blade tip-initiated stall inception. The result of numerical parametric study is then demonstrated to show the effect of varying the axial location and the depth of a circumferential single groove. The evaluation based on stall margin improvement showed a higher potential of deeper grooves in stability enhancement, and the optimal position for the groove to be located was indicated to exist near the leading edge of the blade.

Author(s):  
Yasunori Sakuma ◽  
Toshinori Watanabe ◽  
Takehiro Himeno ◽  
Dai Kato ◽  
Takeshi Murooka ◽  
...  

The effect of circumferential single grooved casing treatment on the stability enhancement of NASA Rotor 37 has been examined with CFD analysis. Stall inception mechanism of Rotor 37 is presented first with principal focus on the tip leakage flow behavior, passage blockage, and the vortical flow structures. Detailed observation showed that the combined interaction of the stagnated flow of tip leakage vortex breakdown and the jet-like leakage flow from the mid-chord region leads to the blade tip-initiated stall inception. The result of numerical parametric study is then demonstrated to show the effect of varying the axial location and the depth of a circumferential single groove. The evaluation based on stall margin improvement showed a higher potential of deeper grooves in stability enhancement, and the optimal position for the groove to be located was indicated to exist near the leading edge of the blade.


Author(s):  
Yasunori Sakuma ◽  
Toshinori Watanabe ◽  
Takehiro Himeno ◽  
Dai Kato ◽  
Takeshi Murooka ◽  
...  

The effect of a single circumferential casing groove on the stability enhancement of two different transonic compressors has been examined with CFD analysis. The differences in flow field and stall inception mechanism between two rotors are presented with principal focus on passage blockage and tip leakage flow behavior. Detailed observation showed that the blockage flow which leads the compressor to stall was different between each other. A parametric study conducted with respect to the axial location of the groove has clarified that the effect which groove has on the tip leakage flow behavior changes according to the blade tip loading and the design tip clearance gap at the location where the groove is applied. When the casing treatment was applied to the compressors with different instability mechanism, whether the casing treatment could enhance the stability of compressor or not was not only dependant on the extent of the influence which it had on the flow field but also on whether it could affect the original stall-initiating phenomena at the adequate location.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Teng Cao ◽  
Tadashi Kanzaka ◽  
Liping Xu ◽  
Tobias Brandvik

Abstract In this paper, an unsteady tip leakage flow phenomenon is identified and investigated in a centrifugal compressor with a vaneless diffuser at near-stall conditions. This phenomenon is associated with the inception of a rotating instability in the compressor. The study is based on numerical simulations that are supported by experimental measurements. The study confirms that the unstable flow is governed by a Kelvin–Helmholtz type instability of the shear layer formed between the main-stream flow and the tip leakage flow. The shear layer instability induces large-scale vortex roll-up and forms vortex tubes, which propagate circumferentially, resulting in measured pressure fluctuations with short wavelength and high amplitude which rotate at about half of the blade speed. The 3D vortex tube is also found to interact with the main blade leading edge, causing the reduction of the blade loading identified in the experiment. The paper also reveals that the downstream volute imposes a once-per-rev circumferential nonuniform back pressure at the impeller exit, inducing circumferential loading variation at the impeller inducer, and causing circumferential variation in the unsteady tip leakage flow.


2009 ◽  
Vol 131 (8) ◽  
Author(s):  
Alessandro Corsini ◽  
Franco Rispoli ◽  
A. G. Sheard

This study assesses the effectiveness of modified blade-tip configurations in achieving passive noise control in industrial fans. The concepts developed here, which are based on the addition of end-plates at the fan-blade tip, are shown to have a beneficial effect on the fan aeroacoustic signature as a result of the changes they induce in tip-leakage-flow behavior. The aerodynamic merits of the proposed blade-tip concepts are investigated by experimental and computational studies in a fully ducted configuration. The flow mechanisms in the blade-tip region are correlated with the specific end-plate design features, and their role in the creation of overall acoustic emissions is clarified. The tip-leakage flows of the fans are analyzed in terms of vortex structure, chordwise leakage flow, and loading distribution. Rotor losses are also investigated. The modifications to blade-tip geometry are found to have marked effects on the multiple vortex behaviors of leakage flow as a result of changes in the near-wall fluid flow paths on both blade surfaces. The improvements in rotor efficiency are assessed and correlated with the control of tip-leakage flows produced by the modified tip end-plates.


Author(s):  
Huijing Zhao ◽  
Zhiheng Wang ◽  
Shubo Ye ◽  
Guang Xi

To better understand the characteristics of tip leakage flow and interpret the correlation between flow instability and tip leakage flow, the flow in the tip region of a centrifugal impeller is investigated by using the Reynolds averaged Navier–Stokes solver technique. With the decrease of mass flow rate, both the tip leakage vortex trajectory and the mainflow/tip leakage flow interface are shifted towards upstream. The mainflow/tip leakage flow interface finally reaches the leading edge of main blade at the near-stall condition. A prediction model is proposed to track the tip leakage vortex trajectory. The blade loading at blade tip and the averaged streamwise velocity of main flow within tip clearance height are adopted to determine the tip leakage vortex trajectory in the proposed model. The coefficient k in Chen’s model is found to be not a constant. Actually, it is correlated with h/b (the ratio of blade tip clearance height to blade tip thickness), because h/b will significantly influence the flow structure across the tip clearance. The effectiveness of the proposed prediction model is further demonstrated by tracking the tip leakage vortex trajectories in another three centrifugal impellers characterized with different h/b (s).


2007 ◽  
Vol 73 (732) ◽  
pp. 1655-1662 ◽  
Author(s):  
Takahiro NISHIOKA ◽  
Toshio KANNO ◽  
Hiroshi HAYAMI

Author(s):  
Wei Wang ◽  
Wuli Chu ◽  
Haoguang Zhang ◽  
Yanhui Wu

Recirculating casing treatment (RCT) was studied in a subsonic axial flow compressor experimentally and numerically. The RCT was parameterized with the injector throat height and circumferential coverage percentage (ccp) to investigate its influence on compressor stability and on the overall performance in the experimentation. The injector throat height varied from 2 to 6 times the height of the rotor tip clearance, and the ccp ranged from 8.3% to 25% of the casing perimeter. Various RCT configurations were achieved with a modular design procedure. The rotor casing was instrumented with fast-response pressure transducers to detect the stall inception, rotational speed of stall cells, and pressure flow fields. Whole-passage unsteady simulations were also implemented for the RCT and solid casing to understand the flow details. Results indicate that both the compressor stability and overall performance can be improved through RCT with appropriate geometrical parameters. The effect of injector throat height on the stability depends on the choice of ccp, i.e., interaction effect exists. In general, the RCT with a moderate injector throat height and a large circumferential coverage is the optimal choice. Phase-locked pattern of the casing wall pressure reveals a weakened tip leakage vortex under the effect of RCT compared with the solid casing. The numerical results show that the RCT has a substantial effect on tip blockage even when the blade passages break away from the domain of RCT. The reduction of tip blockage induced by the tip leakage vortex is the main reason for the extension of stable operation range. The unsteadiness of double-leakage flow is detected both in the experiment and in numerical simulations. The pressure fluctuations caused by double-leakage flow are depressed with RCT. This observation indicates reduced losses related with the double-leakage flow. Although the stall inception is not changed by implementing RCT, the stall pattern is altered. The stall with two cells is detected in RCT compared with the solid casing with only one stall cell.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1481
Author(s):  
Xinrui Li ◽  
Zhenggui Li ◽  
Baoshan Zhu ◽  
Weijun Wang

To study the effect of tip clearance on unsteady flow in a tubular turbine, a full-channel numerical calculation was carried out based on the SST k–ω turbulence model using a power-plant prototype as the research object. Tip leakage flow characteristics of three clearance δ schemes were compared. The results show that the clearance value is directly proportional to the axial velocity, momentum, and flow sum of the leakage flow but inversely proportional to turbulent kinetic energy. At approximately 35–50% of the flow direction, velocity and turbulent kinetic energy of the leakage flow show the trough and peak variation law, respectively. The leakage vortex includes a primary tip leakage vortex (PTLV) and a secondary tip leakage vortex (STLV). Increasing clearance increases the vortex strength of both parts, as the STLV vortex core overlaps Core A of PTLV, and Core B of PTLV becomes the main part of the tip leakage vortex. A “right angle effect” causes flow separation on the pressure side of the tip, and a local low-pressure area subsequently generates a separation vortex. Increasing the gap strengthens the separation vortex, intensifying the flow instability. Tip clearance should therefore be maximally reduced in tubular turbines, barring other considerations.


Author(s):  
Hideaki Tamaki

Centrifugal compressors used for turbochargers need to achieve a wide operating range. A recirculation device, which consists of a bleed slot, an upstream slot and an annular cavity connecting both slots, is often applied to them. The author developed a high pressure ratio centrifugal compressor with pressure ratio 5.7 for a marine use turbocharger. In order to enhance operating range, a recirculation device was applied, the benefits of its application ensuring. This paper discusses how the recirculation device affects the flow field in the above transonic centrifugal compressor by using steady 3D calculations. It is reported that the interaction between shock and tip leakage vortex is one of the primary causes of stall inception in the impeller. Analysis of shock and tip leakage flow behavior leads to an understanding of the basic mechanism of the enhancement of operating range by the recirculation device. Hence this study focuses on the effect of the recirculation devices on the shock and tip leakage flow. Steady 3D calculations were performed and the effect of the recirculation device was clarified. The bleed slot of the recirculation device works in a similar way to circumferential grooves applied to axial compressors. It reduces the blade loading in the impeller tip region. And hence the velocity of tip leakage flow exiting the bleed slot becomes lower compared with that without the recirculation device. The flow through the bleed slot impinges on the tip leakage flow originated upstream and blocks the extension of the tip leakage flow. It also deflects the trajectory of the tip leakage vortex. In addition to these effects, the bleed slot removes the fluid near the casing. The shock moves downstream due to the reduction of the blockage. All these effects induced by the recirculation device are considered to lead to the suppression of the extension of blockage and to contribute to the enhancement of the compressor operating range.


Sign in / Sign up

Export Citation Format

Share Document