A Method of Map Extrapolation for Unequal and Partial Admission in a Double Entry Turbine

2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Peter Newton ◽  
Alessandro Romagnoli ◽  
Ricardo Martinez-Botas ◽  
Colin Copeland ◽  
Martin Seiler

This paper presents a method for prediction of the unequal admission performance of a double entry turbine based on the full admission turbine maps and a minimal number of unequal admission points. The double entry turbine has two separate inlet ports which feed a single turbine wheel: this arrangement can be beneficial in a turbocharger application; however the additional entry does add complexity in producing a complete turbine map which includes unequal admission behavior. When a double entry turbine is operated under full admission conditions, with both entries feeding the turbine equally, this will act effectively as a single entry device and the turbine performance can be represented by a standard turbine map. In reality a multiple entry turbine will spend the majority of time operating under varying degrees of unequal admission, with each entry feeding the turbine different amounts; the extent of this inequality can have a considerable impact on turbine performance. In order to produce a full map which extends from full admission through to the partial admission case (where one inlet has no flow) a large number of unequal admission data points are required. The paper starts by discussing previous attempts to describe the partial and unequal admission performance of a double entry turbine. The full unequal admission performance is then presented for a nozzled, double entry turbine. The impact of unequal admission on turbine performance is demonstrated. Under some conditions of operation, the turbine efficiency may be less than half that of the equivalent full admission case based on the average turbine velocity ratio. A method of using the steady, equal admission maps, with a limited number of unequal admission data points, to predict the full unequal admission behavior is presented. A good agreement is found when the map extension method is validated against the full unequal admission turbine performance measured on a test stand. In the prediction of efficiency a mean error of approximately 0.39% is found between the test stand data and the proposed extrapolation method, with a standard deviation of 2.79%. A better agreement is generally found at conditions of higher power.

Author(s):  
Peter Newton ◽  
Alessandro Romagnoli ◽  
Ricardo Martinez-Botas ◽  
Colin Copeland ◽  
Martin Seiler

This paper presents a method for prediction of the unequal admission performance of a double entry turbine based on the full admission turbine maps and a minimal number of unequal admission points. The double entry turbine has two separate inlet ports which feed a single turbine wheel: this arrangement can be beneficial in a turbocharger application; however the additional entry does add complexity in producing a complete turbine map which includes unequal admission behaviour. When a double entry turbine is operated under full admission conditions, with both entries feeding the turbine equally, this will act effectively as a single entry device and the turbine performance can be represented by a standard turbine map. In reality a multiple entry turbine will spend the majority of time operating under varying degrees of unequal admission, with each entry feeding the turbine different amounts; the extent of this inequality can have a considerable impact on turbine performance. In order to produce a full map which extends from full admission through to the partial admission case (where one inlet has no flow) a large number of unequal admission data points are required. The paper starts by discussing previous attempts to describe the partial and unequal admission performance of a double entry turbine. The full unequal admission performance is then presented for a nozzled, double entry turbine. The impact of unequal admission on turbine performance is demonstrated. Under some conditions of operation, the turbine efficiency may be less than half that of the equivalent full admission case based on the average turbine velocity ratio. A method of using the steady, equal admission maps, with a limited number of unequal admission data points, to predict the full unequal admission behaviour is presented. A good agreement is found when the map extension method is validated against the full unequal admission turbine performance measured on a test stand. In the prediction of efficiency a mean error of approximately 0.39% is found between the test stand data and the proposed extrapolation method, with a standard deviation of 2.79%. A better agreement is generally found at conditions of higher power.


2011 ◽  
Vol 134 (2) ◽  
Author(s):  
Colin D. Copeland ◽  
Ricardo Martinez-Botas ◽  
Martin Seiler

Circumferentially divided, double entry turbocharger turbines are designed with a dividing wall parallel to the machine axis such that each entry feeds a separate 180 deg section of the nozzle circumference prior to entry into the rotor. This allows the exhaust pulses originating from the internal combustion exhaust to be preserved. Since the turbine is fed by two separate unsteady flows, the phase difference between the exhaust pulses entering the turbine rotor will produce a momentary imbalance in the flow conditions around the periphery of the turbine rotor. This research seeks to provide new insight into the impact of unsteadiness on turbine performance. The discrepancy between the pulsed flow behavior and that predicted by a typical steady flow performance map is a central issue considered in this work. In order to assess the performance deficit attributable to unequal admission, the steady flow conditions introduced in one inlet were varied with respect to the other. The results from these tests were then compared with unsteady, in-phase and out-of-phase pulsed flows most representative of the actual engine operating condition.


Author(s):  
Colin D. Copeland ◽  
Ricardo Martinez-Botas ◽  
Martin Seiler

Circumferentially divided, double-entry turbocharger turbines are designed with a dividing wall parallel to the machine axis such that each entry feeds a separate 180° section of the nozzle circumference prior to entry into the rotor. This allows the exhaust pulses originating from the internal combustion exhaust to be preserved. Since the turbine is fed by two separate unsteady flows, the phase difference between the exhaust pulses entering the turbine rotor will produce a momentary imbalance in the flow conditions around the periphery of the turbine rotor. This research seeks to provide new insight into the impact of unsteadiness on turbine performance. The discrepancy between the pulsed flow behaviour and that predicted by a typical steady flow performance map is a central issue considered in this work. In order to assess the performance deficit attributable to unequal admission, the steady flow conditions introduced in one inlet were varied with respect to the other. The results from these tests were then compared to unsteady, in-phase and out-of-phase pulsed flow most representative of the actual engine operating condition.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Colin D. Copeland ◽  
Ricardo Martinez-Botas ◽  
Martin Seiler

The experimental performance evaluation of a circumferentially divided, double-entry turbocharger turbine is presented in this paper with the aim of understanding the influence of pulsating flow. By maintaining a constant speed but varying the frequency of the pulses, the influence of frequency was shown to play an important role in the performance of the turbine. A trend of decreasing cycle-averaged efficiency at lower frequencies was measured. One of the principal objectives was to assess the degree to which the unsteady performance differs from the quasi-steady assumption. In order to make the steady-unsteady comparison for a multiple entry turbine, a wide set of steady equal and unequal admission flow conditions were tested. The steady-state data was then interpolated as a function of three, nondimensional parameters in order to allow a point-by-point comparison with the instantaneous unsteady operation. As an average, the quasi-steady assumption generally underpredicted the mass flow and efficiency loss through the turbine, albeit the differences were reduced as the frequency increased. Out-of-phase pulsations produced unsteady operating orbits that corresponded to a significant steady-state, partial admission loss, and this was reflected as a drop in the quasi-steady efficiency. However, these differences between quasi-steady in-phase and out-of-phase predictions were not replicated in the measured results, suggesting that the unequal admission loss is not as significant in pulsating flow as it is in steady flow.


Author(s):  
Colin D. Copeland ◽  
Ricardo Martinez-Botas ◽  
Martin Seiler

The experimental performance evaluation of a circumferentially divided, double-entry turbocharger turbine is presented in this paper with the aim of understanding the influence of pulsating flow. By maintaining a constant speed but varying the frequency of the pulses, the influence of frequency was shown to play an important role in the performance of the turbine. A trend of decreasing cycle-averaged efficiency at lower frequencies was measured. One of the principal objectives was to assess the degree to which the unsteady performance differs from the quasi-steady assumption. In order to make the steady-unsteady comparison for a multiple entry turbine, a wide set of steady equal and unequal admission flow conditions were tested. The steady state data was then interpolated as a function of three, non-dimensional parameters in order to allow a point-by-point comparison with the instantaneous unsteady operation. As an average, the quasi-steady assumption generally under-predicted the mass flow and efficiency loss through the turbine, albeit the differences were reduced as the frequency increased. Out-of-phase pulsations produced unsteady operating orbits that corresponded to a significant steady state, partial admission loss, and this was reflected as a drop in the quasi-steady efficiency. However, these differences between quasi-steady in-phase and out-of-phase predictions were not replicated in the measured results, suggesting that the unequal admission loss is not as significant in pulsating flow as it is in steady flow.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ganna Rozhnova ◽  
Christiaan H. van Dorp ◽  
Patricia Bruijning-Verhagen ◽  
Martin C. J. Bootsma ◽  
Janneke H. H. M. van de Wijgert ◽  
...  

AbstractThe role of school-based contacts in the epidemiology of SARS-CoV-2 is incompletely understood. We use an age-structured transmission model fitted to age-specific seroprevalence and hospital admission data to assess the effects of school-based measures at different time points during the COVID-19 pandemic in the Netherlands. Our analyses suggest that the impact of measures reducing school-based contacts depends on the remaining opportunities to reduce non-school-based contacts. If opportunities to reduce the effective reproduction number (Re) with non-school-based measures are exhausted or undesired and Re is still close to 1, the additional benefit of school-based measures may be considerable, particularly among older school children. As two examples, we demonstrate that keeping schools closed after the summer holidays in 2020, in the absence of other measures, would not have prevented the second pandemic wave in autumn 2020 but closing schools in November 2020 could have reduced Re below 1, with unchanged non-school-based contacts.


2020 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
Soroush Ojagh ◽  
Sara Saeedi ◽  
Steve H. L. Liang

With the wide availability of low-cost proximity sensors, a large body of research focuses on digital person-to-person contact tracing applications that use proximity sensors. In most contact tracing applications, the impact of SARS-CoV-2 spread through touching contaminated surfaces in enclosed places is overlooked. This study is focused on tracing human contact within indoor places using the open OGC IndoorGML standard. This paper proposes a graph-based data model that considers the semantics of indoor locations, time, and users’ contexts in a hierarchical structure. The functionality of the proposed data model is evaluated for a COVID-19 contact tracing application with scalable system architecture. Indoor trajectory preprocessing is enabled by spatial topology to detect and remove semantically invalid real-world trajectory points. Results show that 91.18% percent of semantically invalid indoor trajectory data points are filtered out. Moreover, indoor trajectory data analysis is innovatively empowered by semantic user contexts (e.g., disinfecting activities) extracted from user profiles. In an enhanced contact tracing scenario, considering the disinfecting activities and sequential order of visiting common places outperformed contact tracing results by filtering out unnecessary potential contacts by 44.98 percent. However, the average execution time of person-to-place contact tracing is increased by 58.3%.


Author(s):  
Matthijs D. Kruizinga ◽  
Daphne Peeters ◽  
Mirjam van Veen ◽  
Marlies van Houten ◽  
Jantien Wieringa ◽  
...  

AbstractThe coronavirus disease 2019 pandemic has enormous impact on society and healthcare. Countries imposed lockdowns, which were followed by a reduction in care utilization. The aims of this study were to quantify the effects of lockdown on pediatric care in the Netherlands, to elucidate the cause of the observed reduction in pediatric emergency department (ED) visits and hospital admissions, and to summarize the literature regarding the effects of lockdown on pediatric care worldwide. ED visits and hospital admission data of 8 general hospitals in the Netherlands between January 2016 and June 2020 were summarized per diagnosis group (communicable infections, noncommunicable infections, (probable) infection-related, and noninfectious). The effects of lockdown were quantified with a linear mixed effects model. A literature review regarding the effect of lockdowns on pediatric clinical care was performed. In total, 126,198 ED visits and 47,648 admissions were registered in the study period. The estimated reduction in general pediatric care was 59% and 56% for ED visits and admissions, respectively. The largest reduction was observed for communicable infections (ED visits: 76%; admissions: 77%), whereas the reduction in noninfectious diagnoses was smaller (ED visits 36%; admissions: 37%). Similar reductions were reported worldwide, with decreases of 30–89% for ED visits and 19–73% for admissions.Conclusion: Pediatric ED utilization and hospitalization during lockdown were decreased in the Netherlands and other countries, which can largely be attributed to a decrease in communicable infectious diseases. Care utilization for other conditions was decreased as well, which may indicate that care avoidance during a pandemic is significant. What is Known:• The COVID-19 pandemic had enormous impact on society.• Countries imposed lockdowns to curb transmission rates, which were followed by a reduction in care utilization worldwide. What is New:• The Dutch lockdown caused a significant decrease in pediatric ED utilization and hospitalization, especially in ED visits and hospital admissions because of infections that were not caused by SARS-CoV-2.• Care utilization for noninfectious diagnoses was decreased as well, which may indicate that pediatric care avoidance during a pandemic is significant.


1968 ◽  
Vol 90 (4) ◽  
pp. 349-359 ◽  
Author(s):  
O. E. Balje´ ◽  
R. L. Binsley

The maximum obtainable efficiency and associated geometry have been calculated based on the use of generalized loss correlations from Part A and are presented for full and partial admission turbines over a wide range of specific speeds. The calculated effects of varying values of Reynolds number, tip clearance, and trailing edge thickness on turbine performance are presented. Because of the anticipated difficulty in fabricating some of the optimum geometries calculated, the effects of using nonoptimum values of geometric parameters on attainable efficiency have also been investigated. The derating factor for machine Reynolds number is shown to be a strong function of specific speed, varying from 0.96 at a specific speed of 100, to 0.6 at a specific speed of 3, when Reynolds number is 105 compared to a reference value of 106. The derating factor for tip clearance is shown to be similar to what would be expected if the clearance area were considered as a leakage area. The use of blade heights, blade numbers, rotor exit angles, and degrees of reaction varying from the optimum by 25 percent produce maximum derating factors of 0.99, 0.98, 0.985, and 0.97, respectively, when compared to full optimum values.


Author(s):  
Alex Nakos ◽  
Bernd Beirow ◽  
Arthur Zobel

Abstract The radial turbine impeller of an exhaust turbocharger is analyzed in view of both free vibration and forced response. Due to random blade mistuning resulting from unavoidable inaccuracies in manufacture or material inhomogeneities, localized modes of vibration may arise, which involve the risk of severely magnified blade displacements and inadmissibly high stress levels compared to the tuned counterpart. Contrary, the use of intentional mistuning (IM) has proved to be an efficient measure to mitigate the forced response. Independently, the presence of aerodynamic damping is significant with respect to limit the forced response since structural damping ratios of integrally bladed rotors typically take extremely low values. Hence, a detailed knowledge of respective damping ratios would be desirable while developing a robust rotor design. For this, far-reaching experimental investigations are carried out to determine the damping of a comparative wheel within a wide pressure range by simulating operation conditions in a pressure tank. Reduced order models are built up for designing suitable intentional mistuning patterns by using the subset of nominal system modes (SNM) approach introduced by Yang and Griffin [1], which conveniently allows for accounting both differing mistuning patterns and the impact of aeroelastic interaction by means of aerodynamic influence coefficients (AIC). Further, finite element analyses are carried out in order to identify appropriate measures how to implement intentional mistuning patterns, which are featuring only two different blade designs. In detail, the impact of specific geometric modifications on blade natural frequencies is investigated.


Sign in / Sign up

Export Citation Format

Share Document