An Integral Solution for Skin Friction in Turbulent Flow Over Aerodynamically Rough Surfaces With an Arbitrary Pressure Gradient

2014 ◽  
Vol 136 (8) ◽  
Author(s):  
James Sucec

The combined law of the wall and wake, with the inclusion of the “roughness depression function” for the inner law in the “Log” region, is used as the inner coordinates' velocity profile in the integral form of the x momentum equation to solve for the local skin friction coefficient. The “equivalent sand grain roughness” concept is employed in the roughness depression function in the solution. Calculations are started at the beginning of roughness on a surface, as opposed to starting them using the measured experimental values at the first data point, when making comparisons of predictions with data sets. The dependence of the velocity wake strength on both pressure gradient and momentum thickness Reynolds number are taken into account. Comparisons of the prediction with experimental skin friction data, from the literature, have been made for some adverse, zero, and favorable (accelerating flows) pressure gradients. Predictions of the shape factor, roughness Reynolds number, and momentum thickness Reynolds number and comparisons with data are also made for some cases. In addition, some comparisons with the predictions of earlier investigators have also been made.

1995 ◽  
Vol 117 (3) ◽  
pp. 535-538 ◽  
Author(s):  
James Sucec

The inner law for transpired turbulent boundary layers is used as the velocity profile in the integral form of the x momentum equation. The resulting ordinary differential equation is solved numerically for the skin friction coefficient, as well as boundary layer thicknesses, as a function of position along the surface. Predicted skin friction coefficients are compared to experimental data and exhibit reasonably good agreement with the data for a variety of different cases. These include blowing and suction, with constant blowing fractions F for both mild and severe acceleration. Results are also presented for more complicated cases where F varies with x along the surface.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
James Sucec

The integral form of the equation for x momentum is solved for the skin friction coefficient, in external thin boundary layer flow, on surfaces whose technical roughness elements' size is given. This is done by using a “roughness depression function” in the law of the wall and wake which serves as the needed velocity profile. The method uses the equivalent sand grain size concept in its calculations. Predictions are made of the friction coefficient, Cf, as a function of momentum thickness Reynolds number and also, of Cf's dependence on the ratio of momentum thickness to the size of the technical (actual) roughness elements. In addition, boundary layer thicknesses and velocity profiles on rough surfaces are calculated and, when available, comparisons are made with the experimental data from a number of sources in the literature. Also, comparisons are made with the results of another major predictive scheme which does not use the equivalent sand grain concept.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1088 ◽  
Author(s):  
Tuqa Abuldrazzaq ◽  
Hussein Togun ◽  
Hamed Alsulami ◽  
Marjan Goodarzi ◽  
Mohammad Reza Safaei

This paper reports a numerical study on heat transfer improvement in a double backward-facing expanding channel using different convectional fluids. A finite volume method with the k-ε standard model is used to investigate the effects of step, Reynolds number and type of liquid on heat transfer enhancement. Three types of conventional fluids (water, ammonia liquid and ethylene glycol) with Reynolds numbers varying from 98.5 to 512 and three cases for different step heights at a constant heat flux (q = 2000 W/m2) are examined. The top wall of the passage and the bottom wall of the upstream section are adiabatic, while the walls of both the first and second steps downstream are heated. The results show that the local Nusselt number rises with the augmentation of the Reynolds number, and the critical effects are seen in the entrance area of the first and second steps. The maximum average Nusselt number, which represents the thermal performance, can be seen clearly in case 1 for EG in comparison to water and ammonia. Due to the expanding of the passage, separation flow is generated, which causes a rapid increment in the local skin friction coefficient, especially at the first and second steps of the downstream section for water, ammonia liquid and EG. The maximum skin friction coefficient is detected in case 1 for water with Re = 512. Trends of velocities for positions (X/H1 = 2.01, X/H2 = 2.51) at the first and second steps for all the studied cases with different types of convectional fluids are indicated in this paper. The presented findings also include the contour of velocity, which shows the recirculation zones at the first and second steps to demonstrate the improvement in the thermal performance.


2018 ◽  
Vol 847 ◽  
pp. 28-70 ◽  
Author(s):  
G. N. Coleman ◽  
C. L. Rumsey ◽  
P. R. Spalart

A family of cases each containing a small separation bubble is treated by direct numerical simulation (DNS), varying two parameters: the severity of the pressure gradients, generated by suction and blowing across the opposite boundary, and the Reynolds number. Each flow contains a well-developed entry region with essentially zero pressure gradient, and all are adjusted to have the same value for the momentum thickness, extrapolated from the entry region to the centre of the separation bubble. Combined with fully defined boundary conditions this will make comparisons with other simulations and turbulence models rigorous; we present results for a set of eight Reynolds-averaged Navier–Stokes turbulence models. Even though the largest Reynolds number is approximately 5.5 times higher than in a similar DNS study we presented in 1997, the models have difficulties matching the DNS skin friction very closely even in the zero pressure gradient, which complicates their assessment. In the rest of the domain, the separation location per se is not particularly difficult to predict, and the most definite disagreement between DNS and models is near reattachment. Curiously, the better models tend to cluster together in their predictions of pressure and skin friction even when they deviate from the DNS, although their eddy-viscosity levels are widely different in the outer region near the bubble (or they do not rely on an eddy viscosity). Stratford’s square-root law is satisfied by the velocity profiles, both at separation and reattachment. The Reynolds-number range covers a factor of two, with the Reynolds number based on the extrapolated momentum thickness equal to approximately 1500 and 3000. This allows tentative estimates of the improvements that even higher values will bring to the model comparisons. The solutions are used to assess models through pressure, skin friction and other measures; the flow fields are also used to produce effective eddy-viscosity targets for the models, thus guiding turbulence-modelling work in each region of the flow.


2005 ◽  
Author(s):  
Johnny Issa ◽  
Alfonso Ortega

The plane, steady, laminar wall jet with a uniform velocity and temperature profiles at the jet exit is numerically investigated using a two-dimensional finite volume approach for a variety of Reynolds numbers and Prandtl number of 0.712 and 7. Between the jet exit and the downstream self-similar behavior, the flow exhibits a developing region that is not self-similar. The location of the dimensionless virtual origin is carefully investigated and expressed as a function of Reynolds number. The local skin friction coefficient is observed to converge to the analytical self-similar solution at downstream locations. Since no analytical solution exists for the temperature field in either the developing or self-similar regions of this problem, the thermal solution is investigated for both isothermal and isoflux boundary conditions at the wall. The local and overall skin friction coefficients, in addition to the local and overall Nusselt numbers, are reported as a function of Reynolds number, Prandtl number and the dimensionless location downstream of the jet exit.


1954 ◽  
Vol 58 (518) ◽  
pp. 109-121 ◽  
Author(s):  
J. H. Preston

SummaryA simple method of determining local turbulent skin friction on a smooth surface has been developed which utilises a round pitot tube resting on the surface. Assuming the existence of a region near the surface in which conditions are functions only of the skin friction, the relevant physical constants of the fluid and a suitable length, a universal non-dimensional relation is obtained for the difference between the total pressure recorded by the tube and the static pressure at the wall, in terms of the skin friction. This relation, on this assumption, is independent of the pressure gradient. The truth and form of the relation were first established, to a considerable degree of accuracy, in a pipe using four geometrically similar round pitot tubes—the diameter being taken as representative length. These four pitot tubes were then used to determine the local skin friction coefficient at three stations on a wind tunnel wall, under varying conditions of pressure gradient. At each station, within the limits of experimental accuracy, the deduced skin friction coefficient was found to be the same for each pitot tube, thus confirming the basic assumption and leaving little doubt as to the correctness of the skin friction so found. Pitot traverses were then made in the pipe and in the boundary layer on the wind tunnel wall. The results were plotted in two non-dimensional forms on the basis already suggested and they fell close together in a region whose outer limit represented the breakdown of the basic assumption, but close to the wall the results spread out, due to the unknown displacement of the effective centre of a pitot tube near a wall. This again provides further evidence of the existence of a region of local dynamical similarity and of the correctness of the skin friction deduced from measurements with round pitot tubes on the wind tunnel wall. The extent of the region in which the local dynamical similarity may be expected to hold appears to vary from about 1/5 to 1/20 of the boundary-layer thickness for conditions remote from, and close to, separation respectively.


1969 ◽  
Vol 91 (3) ◽  
pp. 371-376 ◽  
Author(s):  
F. M. White

For routine calculations of the properties of the incompressible turbulent boundary layer with arbitrary pressure gradient, the presently accepted method is the Karman integral technique, which consists of three simultaneous equations, the three unknowns being the momentum thickness, the skin friction, and the shape factor. Considerable empiricism is contained in the Karman method, so that the reliability is only fair. The present paper derives an entirely new method, based upon a suggestion of R. Brand and L. Persen. The new approach results in a single equation for the skin friction coefficient, with the only parameter being the nominal Reynolds number and the only empiricism being a single assumption about the effect of pressure gradient. No other variables, such as shape factor or momentum thickness, are needed, although they can of course be calculated as byproducts of the analysis. The new method also contains a built-in separation criterion, which was the most glaring omission of the Karman technique. Agreement with experiment is as good or better than the most reliable Karman methods in use today.


2018 ◽  
Vol 838 ◽  
pp. 369-378 ◽  
Author(s):  
P. R. Spalart ◽  
A. Garbaruk ◽  
A. Stabnikov

We consider fully developed turbulence in straight ducts of non-circular cross-sectional shape, for instance a square. A global friction velocity $\overline{u}_{\unicode[STIX]{x1D70F}}$ is defined from the streamwise pressure gradient $|\text{d}p/\text{d}x|$ and a single characteristic length $h$, half the hydraulic diameter (shapes with disparate length scales, due to high aspect ratio, are excluded). We reason that as the Reynolds number $Re$ reaches high values, outside the viscous region the streamwise velocity differences and the secondary motion scale with $\overline{u}_{\unicode[STIX]{x1D70F}}$ and the Reynolds stresses with $\overline{u}_{\unicode[STIX]{x1D70F}}^{2}$. This extends the classical defect-law argument, associated with Townsend and many others, and is successful in channel and pipe flows. We then posit matched asymptotic expansions with overlap of the law of the wall and the behaviour we assumed in the core region. The wall may be smooth, or have a Nikuradse roughness $k_{S}$ (such that it is fully rough, with $k_{S}^{+}\gg 1$). The consequences include the familiar logarithmic behaviour of the velocity profile, but also the surprising prediction that the skin friction tends to uniformity all around the duct, except near possible corners, asymptotically as $Re\rightarrow \infty$ or $k_{S}/h\rightarrow 0$. This is confirmed by numerical solutions for a square and two ellipses, using a conventional turbulence model, albeit the trend with Reynolds number is slow. The magnitude of the secondary motion also scales as expected, and the skin-friction coefficient follows the logarithm of the appropriate Reynolds number. This is a validation of the mathematical reasoning, but is by no means independent physical evidence, because the turbulence models embody the same assumptions as the theory. The uniformity of the skin friction appears to be a new and falsifiable deduction from turbulence theory, and a candidate for high-Reynolds-number experiments.


1979 ◽  
Vol 23 (02) ◽  
pp. 140-156
Author(s):  
P. N. Joubert ◽  
P. H. Hoffmann

Wind tunnel tests were performed to determine the viscous resistance and its components for a 0.564-CB model from the BSRA Trawler Series. It was found that the sum of the pressure and skin friction resistance coefficients agreed well with the viscous resistance coefficient determined from drag balance tests. The range of Reynolds number examined was from 1.15 × 106 to 5.17 × 106. The results for the viscous resistance and its components were fitted using least-squares methods to various equations. The results were also compared with the results of previous tests done at the University of Melbourne on models of Lucy Ash-. ton and a 0.80-CB tanker. It was found that the skin friction and viscous resistance coefficients had curves of quite different position and slope. Local skin friction distribution showed noteworthy differences, especially at the stern, with high values at the keel and low values approaching the waterline.


Sign in / Sign up

Export Citation Format

Share Document