Extreme Response Statistics of Fixed Offshore Structures Subjected to Ringing Loads

Author(s):  
Oleg Gaidai ◽  
Jørgen Krokstad

This paper describes an efficient Monte Carlo based method for prediction of extreme response statistics of fixed offshore structures subjected to random seas. The nonlinear structural response known as “ringing” is studied, which is caused by the wave impact force on structural support units. Common challenge for design of such structures is a sound estimate of the hydrodynamic load including diffraction effects. The aim of the work was to develop specific methods which make it possible to extract the necessary information about the extreme response from relatively short time histories. The method proposed in this paper opens up the possibility to predict simply and efficiently both short-term and long-term extreme response statistics. The results presented are based on extensive simulation results for the large fixed platform operating on the Norwegian continental shelf. Structural response time histories, measured in MARINTEK (MT) wave basin lab, were used to validate numerical results.

Author(s):  
Oleg Gaidai ◽  
Jo̸rgen Krokstad

Paper describes a method for prediction of extreme response statistics of fixed offshore structures subjected to random seas by Monte Carlo simulation. The nonlinear structural response know as “ringing” is studied, caused by the wave impact force on structural support units. Common challenge for design of such structures is a sound estimate of the hydrodynamic load inclusive diffraction effects. Structure is modeled as a multi-degree of freedom (MDOF) system and number of Monte Carlo simulations was performed to highlight extreme response in severe random seas. Since MDOF numerical simulation is costly, an efficient statistical technique was adopted, minimizing required computational effort. Environmental contour method was combined with accurate distribution tail extrapolation. The aim of the work was to develop specific methods which make it possible to extract the necessary information about the extreme response from relatively short time histories. The method proposed in this paper opens up the possibility to predict simply and efficiently both short-term and long-term extreme response statistics. The results presented are based on extensive simulation results for the large fixed platform operating on the Norwegian Continental Shelf. Measured response time histories were used to validate numerical results.


Author(s):  
A. Naess ◽  
O. Gaidai ◽  
S. Haver

The paper presents a study of extreme response statistics of drag dominated offshore structures, showing a pronounced dynamic behaviour when subjected to harsh weather conditions. The key quantity for extreme response prediction is the mean up-crossing rate function, which can be simply extracted from simulated stationary response time histories. Present practise for obtaining adequate extremes for design purposes requires a number — say 20 or more — of 3-hour time domain analyses for several extreme sea states. For early phase considerations, it would be convenient if extremes of a reasonable accuracy could be obtained based on shorter and fewer simulations. It is therefore of interest to develop specific methods which make it possible to extract the necessary information from relatively short time histories. The method proposed in this paper opens up the possibility to predict simply and efficiently long-term extreme response statistics, which is an important issue for the design of offshore structures. A short description of this is given, but in the present paper the emphasis is on short-term analyses. The results presented are based on extensive simulation results for the Kvitebjo̸rn jacket structure, in operation on the Norwegian Continental Shelf. Specifically, deck response time histories for different sea states simulated from a MDOF model were used as the basis for our analyses.


Author(s):  
Martin Storheim ◽  
Gunnar Lian

Steep breaking waves can result in high impact loads on offshore structures, and several model test campaigns have been conducted to assess the effect of horizontal wave slamming. High loads have been measured, and they can be challenging to withstand without significant deformation. For wave slamming problems it is common to estimate the characteristic slamming load and assume that this will give an equivalent characteristic response. One challenge related to the slamming load is that it has a large variability in load level, the duration of the load and the shape of the overall load pulse. This variability can have a large impact on the estimated response to the characteristic load, causing a similar or larger variability in response. Due to the sensitivity to the structural response, it may be difficult to interpret large amounts of such data to arrive at a relevant design load without making overly conservative assumptions. This paper investigates the sensitivity of the structural response to assumptions made in the material modelling and how the short term variability is affected if we instead of load use response indicators such as plastic strain and max deformation to arrive at a characteristic load. For this purpose, a simplified dynamic response model is created, and the recorded wave impact events can then be evaluated based on the predicted structural response from the simplified model. It was found that the structural response is sensitive to the structural configuration. The assumed material behavior and hydro-elastoplastic effects were identified to greatly affect the structural response. A reasonable approach to arrive at the q-annual response seems to be to first estimate the q-annual extreme slamming load, and then run the structural analysis on several of the measured slamming time series with the estimated q-annual extreme pressure.


Author(s):  
Oleg Gaidai ◽  
Arvid Naess ◽  
Carl Trygve Stansberg

The paper discusses a method for estimating extreme value statistics of the airgap for floating offshore platforms subjected to random seas. It is an adaptation of a recently developed method, which is based on the mean upcrossing rate (MUR) function for univariate time series combined with an optimization procedure that allows prediction at extreme response levels by extrapolation. Extensive model tests were performed in a large wave basin for a tension leg platform (TLP) operating in the Norwegian Sea. Among several critical parameters, the airgap was measured at a number of locations under the platform deck. The wave in deck impact is a critical safety issue with respect to the deck damage and occurrence of extreme tether tensions. The authors have utilized experimental data to look at critical airgaps under the deck in random waves. Conclusions are drawn about extreme airgap statistics, and consequently about the wave impact probability in severe seas.


Author(s):  
Zhenjia (Jerry) Huang ◽  
Don Spencer ◽  
Robert Oberlies ◽  
Gracie Watts ◽  
Wenting Xiao

For the design of offshore structures in harsh wave environments, model testing continues to be the recommended industry practice for determining wave impact forces on offshore structures. Accurate measurements of wave impacts in model tests have been a challenge for several decades. Transducers are required to accurately capture the short duration, high magnitude, and dynamic nature of impact loads. The structural model, transducers, and the transducer mountings need to be designed such that mechanical vibrations in the integrated transducer-mounting-structural model system do not contaminate the wave impact measurements. In this work, the dynamic oscillations in the measurements were controlled through the design and fabrication of transducers, their mounting and the GBS model. Wave crest probability distributions were developed that included fully nonlinear effects. These distributions were used as a benchmark to qualify the waves in the wave calibration tests. The highly stochastic nature of impact loads makes it challenging to obtain converged probability distributions of the maximum impact loads (i.e. forces or pressures) from model tests. To increase the confidence in the statistical values of wave impact loads, a large number of realizations were used for a given sea state. Variability of the maximum pressure due to wave basin effects (such as wait-time between tests) was examined with fifteen repeat tests using the same wave maker control signal. These tests provided insights into the random behavior of the impact loads.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. Due to nonlinearity of the drag component of Morison’s wave loading and also due to intermittency of wave loading on members in the splash zone, the response is often non-Gaussian; therefore, simple techniques for derivation of the probability distribution of extreme responses are not available. To this end, the conventional Monte Carlo simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated extreme response values (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. In this paper, the efficiency of an alternative technique in comparison with the conventional simulation technique is investigated.


Author(s):  
M. K. Abu Husain ◽  
N. I. Mohd Zaki ◽  
L. Lambert ◽  
Y. Wang ◽  
G. Najafian

Offshore structures are exposed to random wave loading in the ocean environment and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. To this end, the conventional simulation technique (CTS) is frequently used for predicting the probability distribution of the extreme values of response. However, this technique suffers from excessive sampling variability and hence a large number of simulated response extreme values (hundreds of simulated response records) are required to reduce the sampling variability to acceptable levels. A more efficient method (ETS) was recently introduced which takes advantage of the correlation between the extreme values of linear response and their corresponding response extreme values. The method has proved to be very efficient for both low and high-intensity sea states. In this paper, further development of this technique, which leads to more accurate estimates of the long term probability distribution of the extreme response, is reported.


Author(s):  
A. Naess ◽  
O. Gaidai ◽  
P. S. Teigen

The paper presents a study of the extreme response statistics of a tension leg platform (TLP) subjected to random seas. Two different approaches are compared: A numerical integration method based on saddle point integration and the Monte Carlo method. While the saddle point method is a mathematically attractive technique, which gives numerically very accurate results at low computational costs at any response level, the advantage of the Monte Carlo method is its simplicity and versatility. It is demonstrated in this paper that the commonly assumed obstacle against using the Monte Carlo method for estimating extreme responses, i.e. excessive CPU time, can be circumvented, bringing the computation time down to affordable levels. The agreement between the two approaches is shown to be remarkably good.


Author(s):  
Liang-Yee Cheng ◽  
Rubens Augusto Amaro Junior

Author(s):  
Xin Lu ◽  
Pankaj Kumar ◽  
Anand Bahuguni ◽  
Yanling Wu

The design of offshore structures for extreme/abnormal waves assumes that there is sufficient air gap such that waves will not hit the platform deck. Due to inaccuracies in the predictions of extreme wave crests in addition to settlement or sea-level increases, the required air gap between the crest of the extreme wave and the deck is often inadequate in existing platforms and therefore wave-in-deck loads need to be considered when assessing the integrity of such platforms. The problem of wave-in-deck loading involves very complex physics and demands intensive study. In the Computational Fluid Mechanics (CFD) approach, two critical issues must be addressed, namely the efficient, realistic numerical wave maker and the accurate free surface capturing methodology. Most reported CFD research on wave-in-deck loads consider regular waves only, for instance the Stokes fifth-order waves. They are, however, recognized by designers as approximate approaches since “real world” sea states consist of random irregular waves. In our work, we report a recently developed focused extreme wave maker based on the NewWave theory. This model can better approximate the “real world” conditions, and is more efficient than conventional random wave makers. It is able to efficiently generate targeted waves at a prescribed time and location. The work is implemented and integrated with OpenFOAM, an open source platform that receives more and more attention in a wide range of industrial applications. We will describe the developed numerical method of predicting highly non-linear wave-in-deck loads in the time domain. The model’s capability is firstly demonstrated against 3D model testing experiments on a fixed block with various deck orientations under random waves. A detailed loading analysis is conducted and compared with available numerical and measurement data. It is then applied to an extreme wave loading test on a selected bridge with multiple under-deck girders. The waves are focused extreme irregular waves derived from NewWave theory and JONSWAP spectra.


Sign in / Sign up

Export Citation Format

Share Document