Sensitivity Analysis and Experimental Research on Ball Bearing Early Fault Diagnosis Based on Testing Signal From Casing

Author(s):  
G. Chen ◽  
T. F. Hao ◽  
H. F. Wang ◽  
B. Zhao ◽  
J. Wang ◽  
...  

The ball bearings of an aero-engine are key parts that frequently fail, and it is very important to effectively carry out fault diagnosis of the ball bearings. However, in the present research work, the ball bearing faults characteristics are extracted mainly from the bearing house signals, it is well known that usually only the casing signals can be measured in practical aero-engine test, and the ball bearing faults characteristics will greatly weaken after transmitting to the casing from the bearing house, therefore, it is very important to extract the fault characteristics of ball bearings from casing vibration signals for the ball bearing fault diagnosis in the practical aero-engine. In this study, simulation experiments for ball bearing faults are conducted using two rotor experimental rigs with casings. In addition, by means of the impulse response method, the transfer characteristics from the ball bearings to casing measuring points are measured, and a sensitivity analysis is performed. Faults are created on the inner ring, outer ring, and ball of the ball bearings in the two experimental rigs. The ball bearing experiments are carried out, and the fault features are extracted by means of a wavelet envelope analysis. The experimental results indicate that, with high connection stiffness between the bearing house and the casing, there is little vibration attenuation. However, with low connection stiffness, the vibration attenuation is great. After the impulse vibrations caused by the ball bearing faults are transmitted to the casing, the casing vibration is very weak and is often submerged in other signals. However, the ball bearing fault characteristic frequencies can still be effectively extracted from the weak casing vibration signals by using a wavelet envelope analysis. The research results in this study provide an experimental basis for a ball bearing fault diagnosis based on a casing test signal from a practical aero-engine.

2020 ◽  
Vol 10 (18) ◽  
pp. 6385 ◽  
Author(s):  
Minh Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol Hong Kim

Predicting bearing faults is an essential task in machine health monitoring because bearings are vital components of rotary machines, especially heavy motor machines. Moreover, indicating the degradation level of bearings will help factories plan maintenance schedules. With advancements in the extraction of useful information from vibration signals, diagnosis of motor failures by maintenance engineers can be gradually replaced by an automatic detection process. Especially, state-of-the-art methods using deep learning have contributed significantly to automatic fault diagnosis. This paper proposes a novel method for diagnosing bearing faults and their degradation level under variable shaft speed. In the proposed method, vibration signals are represented by spectrograms to apply deep learning methods through preprocessing using Short-Time Fourier Transform (STFT). Then, feature extraction and health status classification are performed by a convolutional neural network (CNN), VGG16. According to our various experiments, our proposed method can achieve very high accuracy and robustness for bearing fault diagnosis even under noisy environments.


2018 ◽  
Vol 8 (9) ◽  
pp. 1621 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Yong Ren ◽  
Gongbo Zhou ◽  
...  

Acceleration sensors are frequently applied to collect vibration signals for bearing fault diagnosis. To fully use these vibration signals of multi-sensors, this paper proposes a new approach to fuse multi-sensor information for bearing fault diagnosis by using ensemble empirical mode decomposition (EEMD), correlation coefficient analysis, and support vector machine (SVM). First, EEMD is applied to decompose the vibration signal into a set of intrinsic mode functions (IMFs), and a correlation coefficient ratio factor (CCRF) is defined to select sensitive IMFs to reconstruct new vibration signals for further feature fusion analysis. Second, an original feature space is constructed from the reconstructed signal. Afterwards, weights are assigned by correlation coefficients among the vibration signals of the considered multi-sensors, and the so-called fused features are extracted by the obtained weights and original feature space. Finally, a trained SVM is employed as the classifier for bearing fault diagnosis. The diagnosis results of the original vibration signals, the first IMF, the proposed reconstruction signal, and the proposed method are 73.33%, 74.17%, 95.83% and 100%, respectively. Therefore, the experiments show that the proposed method has the highest diagnostic accuracy, and it can be regarded as a new way to improve diagnosis results for bearings.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6886
Author(s):  
Minh Tuan Pham ◽  
Jong-Myon Kim ◽  
Cheol Hong Kim

Bearing elements are vital in induction motors; therefore, early fault detection of rolling-element bearings is essential in machine health monitoring. With the advantage of fault feature representation techniques of time–frequency domain for nonstationary signals and the advent of convolutional neural networks (CNNs), bearing fault diagnosis has achieved high accuracy, even at variable rotational speeds. However, the required computation and memory resources of CNN-based fault diagnosis methods render it difficult to be compatible with embedded systems, which are essential in real industrial platforms because of their portability and low costs. This paper proposes a novel approach for establishing a CNN-based process for bearing fault diagnosis on embedded devices using acoustic emission signals, which reduces the computation costs significantly in classifying the bearing faults. A light state-of-the-art CNN model, MobileNet-v2, is established via pruning to optimize the required system resources. The input image size, which significantly affects the consumption of system resources, is decreased by our proposed signal representation method based on the constant-Q nonstationary Gabor transform and signal decomposition adopting ensemble empirical mode decomposition with a CNN-based method for selecting intrinsic mode functions. According to our experimental results, our proposed method can provide the accuracy for bearing faults classification by up to 99.58% with less computation overhead compared to previous deep learning-based fault diagnosis methods.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 790
Author(s):  
Gilseung Ahn ◽  
Hwanchul Lee ◽  
Jisu Park ◽  
Sun Hur

Diagnosis of bearing faults is crucial in various industries. Time series classification (TSC) assigns each time series to one of a set of pre-defined classes, such as normal and fault, and has been regarded as an appropriate approach for bearing fault diagnosis. Considering late and inaccurate fault diagnosis may have a significant impact on maintenance costs, it is important to classify bearing signals as early and accurately as possible. TSC, however, has a major limitation, which is that a time series cannot be classified until the entire series is collected, implying that a fault cannot be diagnosed using TSC in advance. Therefore, it is important to classify a partially collected time series for early time series classification (ESTC), which is a TSC that considers both accuracy and earliness. Feature-based TSCs can handle this, but the problem is to determine whether a partially collected time series is enough for a decision that is still unsolved. Motivated by this, we propose an indicator of data sufficiency to determine whether a feature-based fault detection classifier can start classifying partially collected signals in order to diagnose bearing faults as early and accurately as possible. The indicator is trained based on the cosine similarity between signals that were collected fully and partially as input to the classifier. In addition, a parameter setting method for efficiently training the indicator is also proposed. The results of experiments using four benchmark datasets verified that the proposed indicator increased both accuracy and earliness compared with the previous time series classification method and general time series classification.


Sign in / Sign up

Export Citation Format

Share Document