Large Scale Finite Element Analysis Via Assembly-Free Deflated Conjugate Gradient

Author(s):  
Praveen Yadav ◽  
Krishnan Suresh

Large-scale finite element analysis (FEA) with millions of degrees of freedom (DOF) is becoming commonplace in solid mechanics. The primary computational bottleneck in such problems is the solution of large linear systems of equations. In this paper, we propose an assembly-free version of the deflated conjugate gradient (DCG) for solving such equations, where neither the stiffness matrix nor the deflation matrix is assembled. While assembly-free FEA is a well-known concept, the novelty pursued in this paper is the use of assembly-free deflation. The resulting implementation is particularly well suited for large-scale problems and can be easily ported to multicore central processing unit (CPU) and graphics-programmable unit (GPU) architectures. For demonstration, we show that one can solve a 50 × 106 degree of freedom system on a single GPU card, equipped with 3 GB of memory. The second contribution is an extension of the “rigid-body agglomeration” concept used in DCG to a “curvature-sensitive agglomeration.” The latter exploits classic plate and beam theories for efficient deflation of highly ill-conditioned problems arising from thin structures.

2013 ◽  
Vol 7 (1) ◽  
pp. 170-178 ◽  
Author(s):  
Weijun Yang ◽  
Yongda Yang ◽  
Jihua Yin ◽  
Yushuang Ni

In order to study the basic mechanical property of cast-in-place stiffening-ribbed-hollow-pipe reinforced concrete girderless floor, and similarities and differences of the structural performance compared with traditional floor, we carried out the destructive stage loading test on the short-term load test of floor model with four clamped edges supported in large scale, and conducted the long-term static load test. Also, the thesis conducted finite element analysis in virtue of ANSYS software for solid slab floor, stiffening-ribbed-hollow-pipe floor and tubular floor. The experiment indicates that the developing process of cracks, distribution and failure mode in stiffening-ribbed-hollow-pipe floor are similar to that of solid girderless floor, and that this kind of floor has higher bearing capacity and better plastic deformation capacity. The finite element analysis manifests that, compared with solid slab floor, the deadweight of stiffening-ribbed-hollow-pipe floor decreases on greater level while deformation increases little, and that compared with tubular floor, this floor has higher rigidity. So stiffening-ribbed-hollow-pipe reinforced concrete girderless floor is particularly suitable for long-span and large-bay building structure.


Author(s):  
Takeshi MURAKAMI ◽  
Yuji NIIHARA ◽  
Takemine YAMADA ◽  
Shintaro OHNO ◽  
Takatoshi NOGUCHI ◽  
...  

2020 ◽  
pp. 1-1
Author(s):  
Yunpeng Zhang ◽  
Xinsheng Yang ◽  
Huihuan Wu ◽  
Dingguo Shao ◽  
Weinong Fu

Sign in / Sign up

Export Citation Format

Share Document