Transparency Improvement by External Force Estimation in a Time-Delayed Nonlinear Bilateral Teleoperation System

Author(s):  
H. Amini ◽  
S. M. Rezaei ◽  
Ahmed A. D. Sarhan ◽  
J. Akbari ◽  
N. A. Mardi

Teleoperation systems have been developed in order to manipulate objects in environments where the presence of humans is impossible, dangerous or less effective. One of the most attractive applications is micro telemanipulation with micropositioning actuators. Due to the sensitivity of this operation, task performance should be accurately considered. The presence of force signals in the control scheme could effectively improve transparency. However, the main restriction is force measurement in micromanipulation scales. A new modified strategy for estimating the external forces acting on the master and slave robots is the major contribution of this paper. The main advantage of this strategy is that the necessity for force sensors is eliminated, leading to lower cost and further applicability. A novel control algorithm with estimated force signals is proposed for a general nonlinear macro–micro bilateral teleoperation system with time delay. The stability condition in the macro–micro teleoperation system with the new control algorithm is verified by means of Lyapunov stability analysis. The designed control algorithm guarantees stability of the macro–micro teleoperation system in the presence of an estimated operator and environmental force. Experimental results confirm the efficiency of the novel control algorithm in position tracking and force reflection.

2017 ◽  
Vol 40 (5) ◽  
pp. 1637-1644
Author(s):  
Farhad Azimifar ◽  
Kamran Hassani ◽  
Amir Hossein Saveh ◽  
Farhad Tabatabai Ghomshe

This paper establishes a novel control strategy for a nonlinear bilateral teleoperation system with time delay. Besides position and velocity signals, force signals are additionally utilized in the control scheme. This modification significantly improves the poor transparency during contact with the environment. To eliminate the external force measurement, a force estimation algorithm is proposed for the master and slave robots. The closed loop stability of the nonlinear teleoperation system with the proposed control scheme is investigated through the Lyapunov theory. Furthermore, it is theoretically and experimentally proved that force reflection occurs and transparency is enhanced simultaneously. Consequently, experimental results verify the efficiency of the new control scheme in free motion and during collision of the slave robot with the environment.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yuling Li

The presence of time delays in communication introduces a limitation to the stability of bilateral teleoperation systems. This paper considers internal model control (IMC) design of linear teleoperation system with time delays, and the stability of the closed-loop system is analyzed. It is shown that the stability is guaranteed delay-independently. The passivity assumption for external forces is removed for the proposed design of teleoperation systems. The behavior of the resulting teleoperation system is illustrated by simulations.


Robotica ◽  
2015 ◽  
Vol 35 (5) ◽  
pp. 1121-1136 ◽  
Author(s):  
Emre Uzunoğlu ◽  
Mehmet İsmet Can Dede

SUMMARYIn this study, a bilateral teleoperation control algorithm is developed in which the model-mediation method is integrated with an impedance controller. The model-mediation method is also extended to three-degrees-of-freedom teleoperation. The aim of this controller is to compensate for instability issues and excessive forcing applied to the slave environment stemming from time delays in communication. The proposed control method is experimentally tested with two haptic desktop devices. Test results indicate that stability and passivity of the bilateral teleoperation system is preserved under variable time delays in communication. It is also observed that safer interactions of the slave system with its environment can be achieved by utilizing an extended version of the model-mediation method with an impedance controller.


2016 ◽  
Vol 40 (11) ◽  
pp. 3252-3262 ◽  
Author(s):  
Zheng Chen ◽  
Ya-Jun Pan ◽  
Jason Gu ◽  
Shane Forbrigger

Multilateral teleoperation systems, which are extended from the traditional bilateral teleoperation, have become subject to increasing attention in current years, with increasing industrial requirements, such as the remote operation of larger objects and more complex tasks. In this paper, a general multilateral teleoperation control problem is discussed, in which n masters remotely control n slaves through delayed communication channels. A novel communication structure is proposed to satisfy the multiple master–slave communication requirement, in which weighting coefficients are chosen freely to perform the weighted effects of different masters or slaves. Power-based time-domain passivity control is subsequently developed for the complex multiple master–slave communication channel, to achieve the passivity of multilateral teleoperation systems under time delay. Experiments on a teleoperation system with two masters and two slaves are described; the results verify the effectiveness of the proposed control scheme.


Robotica ◽  
2015 ◽  
Vol 34 (9) ◽  
pp. 2151-2161 ◽  
Author(s):  
E. Slawiñski ◽  
S. García ◽  
L. Salinas ◽  
V. Mut

SUMMARYThis paper proposes a control scheme applied to the delayed bilateral teleoperation of mobile robots with force feedback in face of asymmetric and time-varying delays. The scheme is managed by a velocity PD-like control plus impedance and a force feedback based on damping and synchronization error. A fictitious force, depending on the robot motion and its environment, is used to avoid possible collisions. In addition, the stability of the system is analyzed from which simple conditions for the control parameters are established in order to assure stability. Finally, the performance of the delayed teleoperation system is shown through experiments where a human operator drives a mobile robot.


2017 ◽  
Vol 40 (13) ◽  
pp. 3851-3859 ◽  
Author(s):  
Farhad Azimifar ◽  
Saman Ahmadkhosravi Rozi ◽  
Ahmad Saleh ◽  
Iman Afyouni

Cooperative teleoperation combines two traditional areas of robotics, that is, teleoperation and collaborative manipulation. Cooperative telerobotic systems consist of multiple pairs of master and slave robotic manipulators operating in a shared environment. The most common control frameworks for nonlinear systems, that is, Proportional Derivative (PD) controllers, possess considerable deficiency in contact motion. In this paper, a novel control scheme is proposed for a nonlinear bilateral cooperative teleoperation system with time delay. In addition to position and velocity signals, force signals are employed in the control strategy. This modification significantly enhances the poor transparency when the slave robots are in collision with the environment. To cope with external forces measurement, a modified force estimation algorithm is proposed to estimate human and environment forces. The closed loop stability of the nonlinear cooperative teleoperation system with the proposed control scheme is investigated using the Lyapunov theory. The main achievement of this research is the stability of the closed loop cooperative teleoperation system in the presence of estimated operator and environmental forces. In addition, it is theoretically and experimentally proved that force reflection occurs and transparency is improved at the same time. Experimental results demonstrate the efficiency of the presented control strategy in free motion as well as when the slave robots are in contact with the environment.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Franco Penizzotto ◽  
Sebastian García ◽  
Emanuel Slawiñski ◽  
Vicente Mut

This paper proposes a control scheme applied to the delayed bilateral teleoperation of wheeled robots with force feedback, considering the performance of the operator’s command execution. In addition, the stability of the system is analyzed taking into account the dynamic model of the master as well as the remote mobile robot under asymmetric and time-varying delays of the communication channel. Besides, the performance of the teleoperation system, where a human operator drives a 3D simulator of a wheeled dynamic robot, is evaluated. In addition, we present an experiment where a robot Pioneer is teleoperated, based on the system architecture proposed.


Robotica ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 61-86 ◽  
Author(s):  
Linping Chan ◽  
Fazel Naghdy ◽  
David Stirling ◽  
Matthew Field

SUMMARYA novel nonlinear teleoperation algorithm for simultaneous inertial parameters and force estimation at the master and slave sides of the teleoperation system is proposed. The scheme, called Extended Active Observer (EAOB), is an extension of the existing active observer. It provides effective force tracking at the master side with accurate position tracking at the slave side in the presence of inertial parameter variation and measurement noise. The proposed method only requires the measurement of robot position, and as a result significantly reduces the difficulty and cost of implementing bilateral teleoperation systems. The approach is described and its stability is analytically verified. The performance of the method is validated through computer simulation and compared with the Nicosia observer-based controller. According to the results, EAOB outperforms the Nicosia observer method and effectively rejects noise.


2013 ◽  
Vol 392 ◽  
pp. 355-360
Author(s):  
Young Won Chang ◽  
Olga Kostiyukova ◽  
Kil To Chong

Bilateral teleoperation systems connected to computer networks such as the internet have to deal with varying time delays depending on several factors such as congestion, bandwidth, or distance. Such systems can easily become unstable due to irregular or varying time delays. A passivity concept has been used as the framework to solve the stability problem in bilateral control of teleoperation systems and we demonstrate in this paper how to recover both passivity and tracking performance using a novel control architecture that incorporates time varying gains into the transmission path, feedforward, and feedback position control. Simulation results for a single-degree of freedom master/ slave system are presented which demonstrates the performance of the resulting control architecture.


2019 ◽  
Vol 29 (4) ◽  
pp. 681-692 ◽  
Author(s):  
Edgar Estrada ◽  
Wen Yu ◽  
Xiaoou Li

Abstract Haptic guidance can improve control accuracy in bilateral teleoperation. With haptic sensing, the human operator feels that he grabs the robot on the remote side. There are results on the stability and transparency analysis of teleoperation without haptic guidance, and the analysis of teleoperation with haptic feedback is only for linear and zero time-delay systems. In this paper, we consider more general cases: the bilateral teleoperation systems have time-varying communication delays, the whole systems are nonlinear, and they have force feedback. By using the admittance human operator model, we propose a new control scheme with the interaction passivity of the teleoperator. The stability and transparency of the master-slave system are proven with the Lyapunov–Krasovskii method. Numerical simulations illustrate the efficiency of the proposed control methods.


Sign in / Sign up

Export Citation Format

Share Document