The Effects of Fuel Injection Pressure and Fuel Type on the Combustion Characteristics of a Diesel Engine

Author(s):  
Jim Cowart ◽  
Dianne Luning Prak ◽  
Len Hamilton

In an effort to understand the effects of injection system pressure on alternative fuel performance, a single-cylinder diesel engine was outfit with a modern common rail fuel injection system and piezoelectric injector. As future new fuels will likely be used in both older mechanical injected engines as well as newer high pressure common rail engines, the question as to the sensitivity of a new fuel type across a range of engines is of concern. In this study, conventional diesel fuel (Navy NATO F76) was compared with the new Navy hydroprocessed renewable diesel (HRD) fuel from algal sources, as well as the high cetane reference fuel nC16 (n-hexadecane CN = 100). It was seen that, in general, ignition delay (IGD) was shortened for all fuels with increasing fuel injection pressure and was shortened with higher CN fuels. The combustion duration for all fuels was also significantly reduced with increasing fuel injection pressure, however, longer durations were seen for higher CN fuels at the same fuel pressure due to less premixing before the start of combustion. Companion modeling using the Lawrence Livermore National Lab (LLNL) heavy hydrocarbon and diesel primary reference fuel (PRF) chemical kinetic mechanisms for HRD and nC16 was applied to understand the relative importance of the physical and chemical delay periods of the IGD. It was seen that at low fuel injection pressures, the physical and chemical delay times are of comparable duration. However, as injection pressure increases the importance of the chemical delay times increases significantly (longer), especially with the lower CN fuel.

Author(s):  
Jim Cowart ◽  
Dianne Luning Prak ◽  
Len Hamilton

In an effort to understand the effects of injection system pressure on alternative fuel performance, a single cylinder diesel engine was outfit with a modern common rail fuel injection system and piezoelectric injector. As future new fuels will likely be used in both older mechanical injected engines as well as newer high pressure common rail engines, the question as to the sensitivity of a new fuel type across a range of engines is of concern. In this study conventional diesel fuel (Navy NATO F76) was compared with the new Navy HRD (Hydro-processed Renewable Diesel) fuel from algal sources, as well as the high cetane reference fuel nC16 (n-hexadecane CN=100). It was seen that in general, IGD (Ignition Delay) was shortened for all fuels with increasing fuel injection pressure, and was shortened with higher CN fuels. The combustion duration for all fuels was also significantly reduced with increasing fuel injection pressure, however, longer durations were seen for higher CN fuels at the same fuel pressure due to less pre-mixing before the start of combustion. Companion modeling using the LLNL (Lawrence Livermore National Lab) heavy hydro-carbon and diesel PRF chemical kinetic mechanisms for HRD and nC16 was applied to understand the relative importance of the physical and chemical delay periods of the IGD. It was seen that at low fuel injection pressures, the physical and chemical delay times are of comparable duration. However, as injection pressure increases the importance of the chemical delay times increases significantly (longer), especially with the lower CN fuel.


2018 ◽  
Vol 7 (4) ◽  
pp. 2594
Author(s):  
Razieh Pourdarbani ◽  
Ramin Aminfar

In this research, we tried to investigate all the fuel injection systems of diesel engines in order to select the most suitable fuel injection system for the OM357 diesel engine to achieve the highest efficiency, maximize output torque and reduce emissions and even reduce fuel consumption. The prevailing strategy for this study was to investigate the effect of injection pressure changes, injection timing and multi-stage injection. By comparing the engines equipped with common rail injection system, the proposed injector for engine OM357 is solenoid, due to the cost of this type of injector, MAP and controller (ECU). It is clear that this will not be possible only with the optimization of the injection system, and so other systems that influence engine performance such as the engine's respiratory system and combustion chamber shape, etc. should also be optimized. 


2021 ◽  
Vol 20 (5) ◽  
pp. 427-433
Author(s):  
G. M. Kuharonak ◽  
M. Klesso ◽  
A. Predko ◽  
D. Telyuk

The purpose of the work is to consider the organization of the working process of six-cylinder diesel engines with a power of 116 and 156 kW and exhaust gas recirculation. The following systems and components were used in the experimental configurations of the engine: Common Rail BOSСH accumulator fuel injection system with an injection pressure of 140 MPa, equipped with electro-hydraulic injectors with seven-hole nozzle and a 500 mm3 hydraulic flow; direct fuel injection system with MOTORPAL fuel pump with a maximum injection pressure of 100 MPa, equipped with MOTORPAL and AZPI five-hole nozzle injectors; two combustion chambers with volumes of 55 and 56 cm3 and bowl diameters of 55.0 and 67.5 mm, respectively; cylinder heads providing a 3.0–4.0 swirl ratio for Common Rail system, 3.5–4.5 for mechanical injection system. The recirculation rate was set by gas throttling before the turbine using a rotary valve of an original design. The tests have been conducted at characteristic points of the NRSC cycle: minimum idle speed 800 rpm, maximum torque speed 1600 rpm, rated power speed 2100 rpm. It has been established that it is possible to achieve the standards of emissions of harmful substances: on the 116 kW diesel engine using of direct-action fuel equipment and a semi-open combustion chamber; on the 156 kW diesel using Common Rail fuel supply system of the Low Cost type and an open combustion chamber.


Sign in / Sign up

Export Citation Format

Share Document