scholarly journals Organization of Six-Cylinder Tractor Diesel Working Process

2021 ◽  
Vol 20 (5) ◽  
pp. 427-433
Author(s):  
G. M. Kuharonak ◽  
M. Klesso ◽  
A. Predko ◽  
D. Telyuk

The purpose of the work is to consider the organization of the working process of six-cylinder diesel engines with a power of 116 and 156 kW and exhaust gas recirculation. The following systems and components were used in the experimental configurations of the engine: Common Rail BOSСH accumulator fuel injection system with an injection pressure of 140 MPa, equipped with electro-hydraulic injectors with seven-hole nozzle and a 500 mm3 hydraulic flow; direct fuel injection system with MOTORPAL fuel pump with a maximum injection pressure of 100 MPa, equipped with MOTORPAL and AZPI five-hole nozzle injectors; two combustion chambers with volumes of 55 and 56 cm3 and bowl diameters of 55.0 and 67.5 mm, respectively; cylinder heads providing a 3.0–4.0 swirl ratio for Common Rail system, 3.5–4.5 for mechanical injection system. The recirculation rate was set by gas throttling before the turbine using a rotary valve of an original design. The tests have been conducted at characteristic points of the NRSC cycle: minimum idle speed 800 rpm, maximum torque speed 1600 rpm, rated power speed 2100 rpm. It has been established that it is possible to achieve the standards of emissions of harmful substances: on the 116 kW diesel engine using of direct-action fuel equipment and a semi-open combustion chamber; on the 156 kW diesel using Common Rail fuel supply system of the Low Cost type and an open combustion chamber.

Author(s):  
Heorhi Kukharonak ◽  
◽  
Mikhail Klesso ◽  
Andrei Predko ◽  
Dmitry Telyuk ◽  
...  

The purpose of the work is the organization of the six-cylinder diesel engines (with a power of 116 and 156 kW) working process with exhaust gas recirculation. The following systems and components were used in the experimental configuration of the engine: Common Rail BOSСH accumulator fuel injection system with an injection pressure of 140 MPa equipped with electro-hydraulic injectors with 7-hole nozzle and a 500 mm3 hydraulic flow; direct fuel injection system with MOTORPAL fuel pump with a maximum injection pressure of 100 MPa, equipped with MOTORPAL and AZPI five-hole nozzle injectors; two combustion chambers with volumes of 55 and 56 cm3 and bowl diameters of 55 and 67.5 mm; cylinder heads providing a 3-4 swirl ratio for Common Rail system, 3.5-4.5 for mechanical injection system; recirculation rate was set by gas throttling before the turbine using original design rotary valve. The tests were conducted at characteristic points of the NRSC cycle: minimum idle speed 800 rpm, maximum torque speed 1600 rpm, rated power speed 2100 rpm. It is established: achievement of emission standards for the 116 kW diesel engine is possible with the use of direct-acting fuel equipment and a semi-open combustion chamber; on the 156 kW diesel - using the Low Cost type common Rail fuel supply system and an open combustion chamber.


2018 ◽  
Vol 7 (4) ◽  
pp. 2594
Author(s):  
Razieh Pourdarbani ◽  
Ramin Aminfar

In this research, we tried to investigate all the fuel injection systems of diesel engines in order to select the most suitable fuel injection system for the OM357 diesel engine to achieve the highest efficiency, maximize output torque and reduce emissions and even reduce fuel consumption. The prevailing strategy for this study was to investigate the effect of injection pressure changes, injection timing and multi-stage injection. By comparing the engines equipped with common rail injection system, the proposed injector for engine OM357 is solenoid, due to the cost of this type of injector, MAP and controller (ECU). It is clear that this will not be possible only with the optimization of the injection system, and so other systems that influence engine performance such as the engine's respiratory system and combustion chamber shape, etc. should also be optimized. 


Author(s):  
Prashanth K. Karra ◽  
Matthias K. Veltman ◽  
Song-Charng Kong

This study performed experimental testing of a multi-cylinder diesel engine using different blends of biodiesel and diesel fuel. The engine used an electronically-controlled common-rail fuel injection system to achieve a high injection pressure. The operating parameters that were investigated included the injection pressure, injection timing, and exhaust gas recirculation rate. Results showed that biodiesel generally reduced soot emissions and increased NOx emissions. The increase in NOx emissions was not due to the injection timing shift when biodiesel was used because the present fuel injection system was able to give the same fuel injection timing. At high exhaust gas recirculation rates, emissions using regular diesel and 20% biodiesel blends are very similar while 100% biodiesel produces relatively different emission levels. Therefore, the increase in NOx emissions may not be a concern when 20% biodiesel blends are used with high exhaust gas recirculation rates in order to achieve low temperature combustion conditions.


Sign in / Sign up

Export Citation Format

Share Document