scholarly journals Frequency-Dependent Tensile and Compressive Effective Moduli of Elastic Solids With Randomly Distributed Two-Dimensional Microcracks

2015 ◽  
Vol 82 (8) ◽  
Author(s):  
Youxuan Zhao ◽  
Yanjun Qiu ◽  
Laurence J. Jacobs ◽  
Jianmin Qu

This paper develops micromechanics models to estimate the tensile and compressive elastic moduli of elastic solids containing randomly distributed two-dimensional microcracks. The crack faces are open under tension and closed under compression. When the crack faces are closed, they may slide against one another following the Coulomb's law of dry friction. The micromechanics models provide analytical expressions of the tensile and compressive moduli for both static and dynamic cases. It is found that the tensile and compressive moduli are different. Further, under dynamic loading, the compressive and tensile moduli are both frequency dependent. As a by-product, the micromechanics models also predict wave attenuation in the dynamic case. Numerical simulations using the finite element method (FEM) are conducted to validate the micromechanics models.

2015 ◽  
Vol 227 (2) ◽  
pp. 399-419 ◽  
Author(s):  
Youxuan Zhao ◽  
Yanjun Qiu ◽  
Laurence J. Jacobs ◽  
Jianmin Qu

Author(s):  
Neander Berto Mendes ◽  
Lineu José Pedroso ◽  
Paulo Marcelo Vieira Ribeiro

ABSTRACT: This work presents the dynamic response of a lock subjected to the horizontal S0E component of the El Centro earthquake for empty and completely filled water chamber cases, by coupled fluid-structure analysis. Initially, the lock was studied by approximation, considering it similar to the case of a double piston coupled to a two-dimensional acoustic cavity (tank), representing a simplified analytical model of the fluid-structure problem. This analytical formulation can be compared with numerical results, in order to qualify the responses of the ultimate problem to be investigated. In all the analyses performed, modeling and numerical simulations were done using the finite element method (FEM), supported by the commercial software ANSYS.


2018 ◽  
pp. 14-18
Author(s):  
V. V. Artyushenko ◽  
A. V. Nikulin

To simulate echoes from the earth’s surface in the low flight mode, it is necessary to reproduce reliably the delayed reflected sounding signal of the radar in real time. For this, it is necessary to be able to calculate accurately and quickly the dependence of the distance to the object being measured from the angular position of the line of sight of the radar station. Obviously, the simplest expressions for calculating the range can be obtained for a segment or a plane. In the text of the article, analytical expressions for the calculation of range for two-dimensional and three-dimensional cases are obtained. Methods of statistical physics, vector algebra, and the theory of the radar of extended objects were used. Since the calculation of the dependence of the range of the object to the target from the angular position of the line of sight is carried out on the analytical expressions found in the paper, the result obtained is accurate, and due to the relative simplicity of the expressions obtained, the calculation does not require much time.


2014 ◽  
Vol 214 ◽  
pp. 143-150
Author(s):  
Piotr Graca

The paper presents numerical modeling of an Axial Active Magnetic Bearing (AAMB) based on two-dimensional (2D) magnetic field computation. The calculations, assisted by the Finite Element Method (FEM), have focused on the determination of the magnetic flux density and the magnetic force. Obtained magnetic field parameters were then measured and verified on a physical model.


Author(s):  
Ye-Chen Lai ◽  
Timothy C. S. Liang ◽  
Zhenxue Jia

Abstract Based on hierarchic shape functions and an effective convergence procedure, the p-version and h-p adaptive analysis capabilities were incorporated into a finite element software system, called COSMOS/M. The range of the polynomial orders can be varied from 1 to 10 for two dimensional linear elastic analysis. In the h-p adaptive analysis process, a refined mesh are first achieved via adaptive h-refinement. The p-refinement is then added on to the h-version designed mesh by uniformly increasing the degree of the polynomials. Some numerical results computed by COSMOS/M are presented to illustrate the performance of these p and h-p analysis capabilities.


Author(s):  
Zi-Gui Huang ◽  
Yunn-Lin Hwang ◽  
Pei-Yu Wang ◽  
Yen-Chieh Mao

The excellent applications and researches of so-called photonic crystals raise the exciting researches of phononic crystals. By the analogy between photon and phonon, repetitive composite structures that are made up of different elastic materials can also prevent elastic waves of some certain frequencies from passing by, i.e., the frequency band gap features also exist in acoustic waves. In this paper, we present the results of the tunable band gaps of acoustic waves in two-dimensional phononic crystals with reticular band structures using the finite element method. Band gaps variations of the bulk modes due to different thickness and angles of reticular band structures are calculated and discussed. The results show that the total elastic band gaps for mixed polarization modes can be enlarged or reduced by adjusting the orientation of the reticular band structures. The phenomena of band gaps of elastic or acoustic waves can potentially be utilized for vibration-free, high-precision mechanical systems, and sound insulation.


Author(s):  
Tomislav Župan ◽  
Bojan Trkulja

Purpose The purpose of this paper is to present a method for calculating frequency-dependent resistance when multiple current-carrying conductors are present. Design/methodology/approach Analytical and numerical formulations are presented. Both skin- and proximity-effects are considered in the numerical approach, whereas only skin-effect can be taken into account in analytical equations. The calculation is done using a self-developed integral equation-based field solver. The results are benchmarked using professional software based on the finite element method (FEM). Findings Results from the numerical approach are in agreement with FEM-based software throughout the whole frequency range. Analytical formulations yield unsatisfactory results in higher frequency range. When multiple conductors are mutually relatively close, the proximity-effect has an impact on effective resistance and has to be taken into account. Research limitations/implications The methodology is presented using axially symmetrical conductors. However, the same procedure can be developed for straight conductors as well. Practical implications Presented fast and stable procedure can be used in most electromagnetic devices when frequency-dependent resistance needs to be precisely determined. Originality/value The value of the presented numerical methodology lies in its ability to take both skin- and proximity-effects into account. As conductors are densely packed in most electromagnetic devices, both effects influence the effective resistance. The method can be easily implemented using a self-developed solver and yields satisfactory results.


1984 ◽  
Vol 106 (3) ◽  
pp. 613-619 ◽  
Author(s):  
M. M. Razzaque ◽  
J. R. Howell ◽  
D. E. Klein

A numerical solution of the exact equations of coupled radiative/conductive heat transfer and temperature distribution inside a medium, and of the heat flux distribution at all the gray walls of a two-dimensional rectangular enclosure with the medium having uniform absorbing/emitting properties, using the finite element method, is presented. The medium can also have distributed energy sources. Comparison is made to the results of the P-3 approximation method.


Sign in / Sign up

Export Citation Format

Share Document