Effect of Acoustic Excitation on R134a/Al2O3 Nanolubricant Mixture Boiling on a Reentrant Cavity Surface

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
M. A. Kedzierski ◽  
S. E. Fick

This paper quantifies the influence of acoustic excitation of Al2O3 nanoparticles on the pool-boiling performance of R134a/polyolester mixtures on a commercial (Turbo-BII-HP) boiling surface. A nanolubricant with 10 nm diameter Al2O3 nanoparticles at a 5.1% volume fraction in the base polyolester lubricant was mixed with R134a at a 1% mass fraction. The study showed that high-frequency ultrasound at 1 MHz can improve R134a/nanolubricant boiling on a reentrant cavity surface by as much as 44%. This maximum enhancement occurred for an applied power level to the fluid of approximately 6 W and a heat flux of approximately 6.9 kW/m2. Applied power levels larger and smaller than 6 W resulted in smaller boiling heat transfer enhancements. In total, five different applied power levels were studied: 0 W, 4 W, 6 W, 8 W, and 12 W. The largest and smallest enhancement averaged over the tested heat flux range were approximately 12% and 2% for the applied power levels of 6 W and 4 W, respectively. In situ insonation at 1 MHz resulted in an improved dispersion of the nanolubricant on the test surface. An existing pool-boiling model for refrigerant/nanolubricant mixtures was modified to include the effect of acoustic excitation. For heat fluxes greater than 25 kW m−2, the model was within 4.5% of the measured heat flux ratios for mixtures, and the average agreement between measurements and predictions was approximately 1% for all power levels.

Author(s):  
M. A. Kedzierski

This paper quantifies the influence of Al2O3 nanoparticles on the pool boiling performance of R134a/polyolester mixtures on a Turbo-BII-HP boiling surface. An Al2O3 nanolubricant (a lubricant containing dispersed nano-size particles) was made by suspending nominally 10 nm diameter Al2O3 particles in a synthetic polyolester to roughly a 1.0% volume fraction. The nanoparticles caused, on average, a 12% degradation in the boiling heat transfer relative to that for R134a/polyolester mixtures without nanoparticles for the three lubricant mass fractions that were tested. The degradation was nearly constant for heat fluxes between 20 kW/m2 and 120 kW/m2. It was speculated that the boiling heat transfer degradation was primarily due to a combination of (1) film boiling in the reentrant cavity rendering the nucleate boiling enhancement mechanism of the nanoparticles ineffective and (2) a reduction in bubble frequency due to the increased surface wetting as caused by the nanoparticles. In addition, these degradation factors might be mitigated with increased nanoparticle loading.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
M. A. Kedzierski ◽  
L. Lin ◽  
D. Kang

This paper quantifies the pool boiling performance of R134a, R1234yf, R513A, and R450A on a flattened, horizontal reentrant cavity surface. The study showed that the boiling performance of R134a on the Turbo-ESP exceeded that of the replacement refrigerants for heat fluxes greater than 20 kW m−2. On average, the heat flux for R1234yf and R513A was 16% and 19% less than that for R134a, respectively, for R134a heat fluxes between 20 kW m−2 and 110 kW m−2. The heat flux for R450A was on average 57% less than that of R134a for heat fluxes between 30 kW m−2 and 110 kW m−2. A model was developed to predict both single-component and multicomponent pool boiling of the test refrigerants on the Turbo-ESP surface. The model accounts for viscosity effects on bubble population and uses the Fritz equation to account for increased vapor production with increasing superheat. Both loss of available superheat and mass transfer resistance effects were modeled for the refrigerant mixtures. For most heat fluxes, the model predicted the measured superheat to within ±0.31 K.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
M. A. Kedzierski ◽  
L. Lin

Abstract This paper quantifies the pool boiling performance of R514A, R1224 yd(Z), and R1336mzz(E) on a flattened, horizontal Turbo-ESP surface for air-conditioning applications for heat fluxes between roughly 10 kWm−2 and 100 kWm−2. R514A, R1224 yd(Z), and R1336mzz(E) are replacements for R123 and R245fa. All of these replacement refrigerants had measured boiling heat fluxes that were larger than that for R123 for most heat fluxes. For example, for heat fluxes between 10 kWm−2 and 80 kWm−2, R514A, R1224 yd(Z), and R1336mzz(E) exhibited average heat fluxes that were 30%, 57%, and 13% larger than that for R123 for a saturation temperature of 277.6 K. For the same comparison done at a saturation temperature of 298.2 K, the average heat flux for R514A was roughly 43% larger than that for R123. A pool boiling model, that was previously developed for pure and mixed refrigerants on the Turbo-ESP surface, was compared to the measured boiling performance. The model predicted the measured superheats of the mixed refrigerants and the single-component refrigerants to within ± 0.7 K and ± 0.45 K, respectively.


Author(s):  
S. M. Sohel Murshed ◽  
Denitsa Milanova ◽  
Ranganathan Kumar

This paper reports an experimental investigation of the pool boiling heat transfer characteristics of single-walled carbon nanotubes (SWCNTs)-nanofluids. Two main characteristics were studied to identify their influence on boiling heat transfer: one is the surface tension through the addition of surfactant and the other is the chemical treatment of nanotubes sidewalls (i.e. oxidized and untreated sidewalls). A Transmission Electron Microscope was used to study the morphology of the functionalized nanotubes and their deposition on heater wire. The maximum enhancement of both the critical and burnout heat fluxes of this nanofluid over those of the pure deionized water are found to be 492% and 265%, respectively at a surfactant to carbon nanotubes concentration ratio of 1:5. This indicates that high enhancement of heat flux is possible and would depend on the concentration of the surfactants. Present results also demonstrate that CNT-nanofluids in a pool boiling environment can extend the saturated boiling regime and the burnout of the heated surface. The burnout heat flux is found to be a strong function of the relaxation of nanofluid surface tension with the base fluid. Based on the best fit of experimental data, an empirical correlation between the burnout heat flux of nanofluid and its relaxation of surface tension is introduced.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
K. Hari Krishna ◽  
Harish Ganapathy ◽  
G. Sateesh ◽  
Sarit K. Das

Nanofluids, solid-liquid suspensions with solid particles of size of the order of few nanometers, have created interest in many researchers because of their enhancement in thermal conductivity and convective heat transfer characteristics. Many studies have been done on the pool boiling characteristics of nanofluids, most of which have been with nanofluids containing oxide nanoparticles owing to the ease in their preparation. Deterioration in boiling heat transfer was observed in some studies. Metallic nanofluids having metal nanoparticles, which are known for their good heat transfer characteristics in bulk regime, reported drastic enhancement in thermal conductivity. The present paper investigates into the pool boiling characteristics of metallic nanofluids, in particular of Cu-H2O nanofluids, on flat copper heater surface. The results indicate that at comparatively low heat fluxes, there is deterioration in boiling heat transfer with very low particle volume fraction of 0.01%, and it increases with volume fraction and shows enhancement with 0.1%. However, the behavior is the other way around at high heat fluxes. The enhancement at low heat fluxes is due to the fact that the effect of formation of thin sorption layer of nanoparticles on heater surface, which causes deterioration by trapping the nucleation sites, is overshadowed by the increase in microlayer evaporation, which is due to enhancement in thermal conductivity. Same trend has been observed with variation in the surface roughness of the heater as well.


1969 ◽  
Vol 91 (3) ◽  
pp. 315-328 ◽  
Author(s):  
I. Shai ◽  
W. M. Rohsenow

Experimental data for sodium boiling on horizontal surfaces containing artificial cavities at heat fluxes of 20,000 to 300,000 Btu/ft2 hr and pressures between 40 to 106 mm Hg were obtained. Observations are made for stable boiling, unstable boiling and “bumping.” Some recorded temperature variations in the solid close to the nucleating cavity are presented. It is suggested that for liquid metals the time for bubble growth and departure is a very small fraction of the total bubble cycle, hence the delay time during which a thermal layer grows is the most significant part of the process. On this basis the transient conduction heat transfer is solved for a periodic process, and the period time is found to be a function of the degree of superheat, the heat flux and the liquid thermal properties. A simplified model for stability of nucleate pool boiling of liquid metals is postulated from which the minimum heat flux for stable boiling can be found as a function of liquid-solid properties, liquid pressure, the degree of superheat, and the cavity radius and depth. At relatively low heat fluxes, convection currents have significant effects on the period time of bubble formation. An empirical correlation is proposed, which takes into account the convection effects, to match the experimental results.


2006 ◽  
Vol 128 (12) ◽  
pp. 1302-1311 ◽  
Author(s):  
Camil-Daniel Ghiu ◽  
Yogendra K. Joshi

An experimental study of pool boiling using enhanced structures under top-confined conditions was conducted with a dielectric fluorocarbon liquid (PF 5060). The single layer enhanced structures studied were fabricated in copper and quartz, had an overall size of 10×10mm2, and were 1mm thick. The parameters investigated in this study were the heat flux (0.8-34W∕cm2) and the top space S(0-13mm). High-speed visualizations were performed to elucidate the liquid/vapor flow in the space above the structure. The enhancement observed for plain surfaces in the low heat fluxes regime is not present for the present enhanced structure. On the other hand, the maximum heat flux for a prescribed 85°C surface temperature limit increased with the increase of the top spacing, similar to the plain surfaces case. Two characteristic regimes of pool boiling have been identified and described: isolated flattened bubbles regime and coalesced bubbles regime.


Author(s):  
Yasuo Koizumi ◽  
Hiroyasu Ohtake ◽  
Masanori Tsukudo ◽  
Naoki Sakamoto

Quenching of a thin gap annular flow passage by gravitational liquid penetration was examined experimentally by using R-113. The outer wall was made of copper. The inner wall was made of copper or glass. The inner diameter of the outer wall of the annular flow passages was 40 or 41 mm and the annular gap clearance δ was 0.5, 1.0, 2.0 and 5.0 mm. The outer wall was heated initially up to 250 °C and also the inner wall was heated when the copper inner wall was used. The quenching was observed in δ ≥ 1.0 mm. When δ = 0.5 mm, the wall was just gradually cooled down. The relation between the wall superheat and the heat flux during quenching process was similar to the boiling curve of pool boiling. However, the peak heat flux as well as the heat flux in the film and the transition boiling was lower than those in the pool boiling. These heat fluxes became lower as the gap clearance became narrow. The rewetting velocity became slow as the gap clearance became narrow. The rewetting velocity seemed to have a unique relation for the Peclet number Pe = (ρSCSδSU/λS) and the Biot number Bi = hδs/λs ; Pe ∝ Bi which was the same as that of the Yamanouchi correlation. A decrease in the heat flux (the heat transfer coefficient) in the rewetting front region, which corresponds to the peak heat flux, results in a decrease in the rewetting velocity as the gap clearance becomes narrow.


Author(s):  
Mohamed S. El-Genk ◽  
Jack L. Parker

Experiments are conducted that investigated pool boiling of FC-72 liquid at saturation and 10, 20, and 30 K subcooling on porous graphite and smooth copper surfaces measuring 10 × 10 mm. The nucleate boiling heat flux, Critical Heat Flux (CHF), and surface superheats at boiling incipience are compared. Theses heat fluxes are also compared with those of other investigators for smooth copper and silicon, etched SiO2, surfaces and micro-porous coating. No temperature excursion at boiling incipience on the porous graphite that occurred at a surface superheats of < 1.0 K. Conversely, the temperature excursions of 24.0 K and 12.4–17.8 K are measured at incipient boiling in saturation and subcooled boiling on copper. Nucleate boiling heat fluxes on porous graphite are significantly higher and corresponding surface superheats are much smaller than on copper. CHF on porous graphite (27.3, 39.6, 49.0, and 57.1 W/cm2 in saturation and 10 K, 20 K, and 30 K subcooled boiling, respectively) are 61.5%–207% higher than those on copper (16.9, 19.5, 23.6, and 28.0 W/cm2, respectively). The surface superheats at CHF on the porous graphite of 11.5 K in saturation and 17–20 K in subcooled boiling are significantly lower that those on copper (25 K and 26–28 K, respectively). In addition, the rate of increase of CHF on porous graphite with increased subcooling is ~ 125% higher than that on copper.


2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Jinsub Kim ◽  
Seongchul Jun ◽  
Jungho Lee ◽  
Seong Hyuk Lee ◽  
Seung M. You

Three different copper surfaces - bare, Al2O3 nano-coated, and Polytetrafluoroethylene (PTFE) coated - are prepared and tested to examine the effect of wettability on the pool boiling incipience in saturated water at 1 atm. A copper surface is coated with Al2O3 particles ranging 25~43 nm in diameter by immersing the surface in Al2O3/ethanol nanofluid (1g/l) and boiled for 3 min. SEM image in Fig. 1 shows the coated Al2O3 nanoparticles on the copper surface, together with the reference bare surface. PTFE coating is also applied to the copper surface using spin coating method with the mixture of Dupont AF 2400 particles and 3M FC-40 solvent. The final coating thickness of the PTFE coating is estimated to be 30 nm. The three surfaces exhibit different static contact angles, 78° (bare), 28° (nano-coated), and 120° (PTFE coated) in Fig. 2, respectively. Wettability affects the boiling incipience heat flux where initial bubble nucleation starts: 15 kW/m2 for the bare surface; 30 kW/m2 for the nano-coated surface; and 2.5 kW/m2 for the PTFE coated surface. Captured images from the high speed camera at 2,000 fps show significantly different bubble shapes and departure frequencies in Fig. 3. During the bubble growth, advancing contact angles are captured and shown qualitatively and found consistent with their static angle measurements for the sessile droplet observed at each surface. The larger bubble is generated on the nano-coated surface compared to that of the bare surface because improved wetting makes promising cavities flood and thus incipience is delayed, resulting in higher superheat. The single bubble life cycle appears to be much longer on the PTFE coated surface due to the increase of the contact angle which becomes hydrophobic (> 90°), resulting in lower bubble departure frequency. Successive tests at the same heat flux of 30 kW/m2 confirmed that life cycle on the PTFE coated surface (88.5 ms) is consistently longer than that on the bare surface (16.5 ms) and nano-coated surface (20 ms).


Sign in / Sign up

Export Citation Format

Share Document