scholarly journals Pool Boiling of Low-Global Warming Potential Replacements for R134a on a Reentrant Cavity Surface

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
M. A. Kedzierski ◽  
L. Lin ◽  
D. Kang

This paper quantifies the pool boiling performance of R134a, R1234yf, R513A, and R450A on a flattened, horizontal reentrant cavity surface. The study showed that the boiling performance of R134a on the Turbo-ESP exceeded that of the replacement refrigerants for heat fluxes greater than 20 kW m−2. On average, the heat flux for R1234yf and R513A was 16% and 19% less than that for R134a, respectively, for R134a heat fluxes between 20 kW m−2 and 110 kW m−2. The heat flux for R450A was on average 57% less than that of R134a for heat fluxes between 30 kW m−2 and 110 kW m−2. A model was developed to predict both single-component and multicomponent pool boiling of the test refrigerants on the Turbo-ESP surface. The model accounts for viscosity effects on bubble population and uses the Fritz equation to account for increased vapor production with increasing superheat. Both loss of available superheat and mass transfer resistance effects were modeled for the refrigerant mixtures. For most heat fluxes, the model predicted the measured superheat to within ±0.31 K.

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
M. A. Kedzierski ◽  
S. E. Fick

This paper quantifies the influence of acoustic excitation of Al2O3 nanoparticles on the pool-boiling performance of R134a/polyolester mixtures on a commercial (Turbo-BII-HP) boiling surface. A nanolubricant with 10 nm diameter Al2O3 nanoparticles at a 5.1% volume fraction in the base polyolester lubricant was mixed with R134a at a 1% mass fraction. The study showed that high-frequency ultrasound at 1 MHz can improve R134a/nanolubricant boiling on a reentrant cavity surface by as much as 44%. This maximum enhancement occurred for an applied power level to the fluid of approximately 6 W and a heat flux of approximately 6.9 kW/m2. Applied power levels larger and smaller than 6 W resulted in smaller boiling heat transfer enhancements. In total, five different applied power levels were studied: 0 W, 4 W, 6 W, 8 W, and 12 W. The largest and smallest enhancement averaged over the tested heat flux range were approximately 12% and 2% for the applied power levels of 6 W and 4 W, respectively. In situ insonation at 1 MHz resulted in an improved dispersion of the nanolubricant on the test surface. An existing pool-boiling model for refrigerant/nanolubricant mixtures was modified to include the effect of acoustic excitation. For heat fluxes greater than 25 kW m−2, the model was within 4.5% of the measured heat flux ratios for mixtures, and the average agreement between measurements and predictions was approximately 1% for all power levels.


2021 ◽  
Vol 143 (5) ◽  
Author(s):  
M. A. Kedzierski ◽  
L. Lin

Abstract This paper quantifies the pool boiling performance of R514A, R1224 yd(Z), and R1336mzz(E) on a flattened, horizontal Turbo-ESP surface for air-conditioning applications for heat fluxes between roughly 10 kWm−2 and 100 kWm−2. R514A, R1224 yd(Z), and R1336mzz(E) are replacements for R123 and R245fa. All of these replacement refrigerants had measured boiling heat fluxes that were larger than that for R123 for most heat fluxes. For example, for heat fluxes between 10 kWm−2 and 80 kWm−2, R514A, R1224 yd(Z), and R1336mzz(E) exhibited average heat fluxes that were 30%, 57%, and 13% larger than that for R123 for a saturation temperature of 277.6 K. For the same comparison done at a saturation temperature of 298.2 K, the average heat flux for R514A was roughly 43% larger than that for R123. A pool boiling model, that was previously developed for pure and mixed refrigerants on the Turbo-ESP surface, was compared to the measured boiling performance. The model predicted the measured superheats of the mixed refrigerants and the single-component refrigerants to within ± 0.7 K and ± 0.45 K, respectively.


1987 ◽  
Vol 109 (2) ◽  
pp. 89-93 ◽  
Author(s):  
P. Gandhidasan ◽  
M. Rifat Ullah ◽  
C. F. Kettleborough

Heat and mass transfer analysis between a desiccant-air contact system in a packed tower has been studied in application to air dehumidification employing liquid desiccant, namely calcium chloride. Ceramic 2 in. Raschig rings are used as the packing material. To predict the tower performance, a steady-state model which considers the heat and mass transfer resistances of the gas phase and the mass transfer resistance of the liquid phase is developed. The governing equations are solved on a digital computer to simulate the performance of the tower. The various parameters such as the effect of liquid concentration and temperature, air temperature and humidity and the rates of flow of air and liquid affecting the tower performance have been discussed.


1969 ◽  
Vol 91 (3) ◽  
pp. 315-328 ◽  
Author(s):  
I. Shai ◽  
W. M. Rohsenow

Experimental data for sodium boiling on horizontal surfaces containing artificial cavities at heat fluxes of 20,000 to 300,000 Btu/ft2 hr and pressures between 40 to 106 mm Hg were obtained. Observations are made for stable boiling, unstable boiling and “bumping.” Some recorded temperature variations in the solid close to the nucleating cavity are presented. It is suggested that for liquid metals the time for bubble growth and departure is a very small fraction of the total bubble cycle, hence the delay time during which a thermal layer grows is the most significant part of the process. On this basis the transient conduction heat transfer is solved for a periodic process, and the period time is found to be a function of the degree of superheat, the heat flux and the liquid thermal properties. A simplified model for stability of nucleate pool boiling of liquid metals is postulated from which the minimum heat flux for stable boiling can be found as a function of liquid-solid properties, liquid pressure, the degree of superheat, and the cavity radius and depth. At relatively low heat fluxes, convection currents have significant effects on the period time of bubble formation. An empirical correlation is proposed, which takes into account the convection effects, to match the experimental results.


2006 ◽  
Vol 71 (8-9) ◽  
pp. 957-967 ◽  
Author(s):  
Ljiljana Markovska ◽  
Vera Meshko ◽  
Mirko Marinkovski

The isotherms and kinetics of zinc adsorption from aqueous solution onto granular activated carbon (GAC) and natural zeolite were studied using an agitated batch adsorber. The maximum adsorption capacities of GAC and natural zeolite towards zinc(II) from Langmuir adsorption isotherms were determined using experimental adsorption equilibrium data. The homogeneous solid diffusion model (HSD-model) combined with external mass transfer resistance was applied to fit the experimental kinetic data. The kinetics simulation study was performed using a computer program based on the proposed mathematical model and developed using gPROMS. As the two-mass transfer resistance approach was applied, two model parameters were fitted during the simulation study. External mass transfer and solid phase diffusion coefficients were obtained to predict the kinetic curves for varying initial Zn(II) concentration at constant agitation speed and constant adsorbent mass. For any particular Zn(II) - adsorbent system, k f was constant, except for the lowest initial concentration, while D s was found to increase with increasing initial Zn(II) concentration.


Sign in / Sign up

Export Citation Format

Share Document