Axial Suspension Compliance and Compression for Enhancing Performance of a Nonlinear Vibration Energy Harvesting Beam System

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
R. L. Harne ◽  
K. W. Wang

Developing energy harvesting platforms that are strongly sensitive to the low and diffused frequency spectra of common environmental vibration sources is a research objective receiving great recent attention. It has been found that utilizing designs and incorporating structural influences that induce small values of linear stiffness may considerably enhance the power generation capabilities of energy harvesting systems. This research examines these two factors in new light toward the development of a biologically-inspired energy harvesting beam platform that exploits axial compressive effects and compliant suspensions. Through theory and experiments, it is found that the strategic exploitation of such characteristics promotes dramatic improvements in the average power that may be generated for the same excitation conditions. Examining the origin of these performance enhancements, it is seen that large compliance in the compressed axial suspensions facilitates a favorable redistribution of dynamic energy, which thereby enables greater bending of the harvester beam and increased electromechanical transduction.

Author(s):  
Saman Farhangdoust ◽  
Claudia Mederos ◽  
Behrouz Farkiani ◽  
Armin Mehrabi ◽  
Hossein Taheri ◽  
...  

Abstract This paper presents a creative energy harvesting system using a bimorph piezoelectric cantilever-beam to power wireless sensors in an IoT network for the Sunshine Skyway Bridge. The bimorph piezoelectric energy harvester (BPEH) comprises a cantilever beam as a substrate sandwiched between two piezoelectric layers to remarkably harness ambient vibrations of an inclined stay cable and convert them into electrical energy when the cable is subjected to a harmonic acceleration. To investigate and design the bridge energy harvesting system, a field measurement was required for collecting cable vibration data. The results of a non-contact laser vibrometer is used to remotely measure the dynamic characteristics of the inclined cables. A finite element study is employed to simulate a 3-D model of the proposed BPEH by COMSOL Multiphasics. The FE modelling results showed that the average power generated by the BPEH excited by a harmonic acceleration of 1 m/s2 at 1 Hz is up to 614 μW which satisfies the minimum electric power required for the sensor node in the proposed IoT network. In this research a LoRaWAN architecture is also developed to utilize the BPEH as a sustainable and sufficient power resource for an IoT platform which uses wireless sensor networks installed on the bridge stay cables to collect and remotely transfer bridge health monitoring data over the bridge in a low-power manner.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 44 ◽  
Author(s):  
Mario Mösch ◽  
Gerhard Fischerauer

Self-adaptive vibration energy harvesting systems vary their resonance frequency automatically to better exploit changing environmental conditions. The energy required for the adjustment is taken from the energy storage of the harvester module. The energy gained by an adjustment step has to exceed the energy expended on it to justify the adjustment. A smart self-adaptive system takes this into account and operates in a manner that maximizes the energy output. This paper presents a theory for the optimal operation of a vibration energy harvester with a passive resonance-frequency adjustment mechanism (one that only requires energy for the adjustment steps proper, but not during the hold phases between the steps). Several vibration scenarios are considered to derive a general guideline. It is shown that there exist conditions under which a narrowing of the adjustment bandwidth improves the system characteristics. The theory is applied to a self-adaptive energy harvesting system based on electromagnetic transduction with narrowband resonators. It is demonstrated that the novel optimum mode of operation increases the energy output by a factor of 3.6.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Wenguang Wu ◽  
Sha Zhang ◽  
Zhiyong Zhang

Running on an unpaved road, the truck’s vibration is weakened by the HPS (hydro-pneumatic suspension) and transformed into thermal energy which was finally dissipated in the air. This paper is aimed to discuss the energy harvesting potential from the truck HPS on random road excitation. In this manner, a quarter-truck model was built and the kinetic energy method that can be used to calculate the power of the dissipated energy was proposed. The dissipated instantaneous power (The peak value is 180 kW) and average power (12 kW) were analyzed which showed 15-fold of difference. The different road class analysis results showed that the E-class road excited 4-fold of power than that of D-class road. The influence of damping and stiffness on the dissipation power was analyzed. The results showed that the power excited by the D-class road is less sensitive than the E-class road. Furthermore, it is interesting that the results also show that the value of average dissipated power when running on E-class road is very close to the speed value, respectively. The real road test of the truck was carried out in an open pit mine and verified the simulation results. The final results demonstrated that the vibrational energy that harvested from the HPS could reduce oil consumption by about 4% in theory.


Author(s):  
Mingyi Liu ◽  
Wei-Che Tai ◽  
Lei Zuo

In rotational electromagnetic generator based vibration energy-harvesting systems, the generator rotor is an inerter. From analysis, it is found that the inerter decreases system frequency bandwidth in single-degree-of-freedom (SDOF) energy-harvesting systems. The maximum electric power output of a SDOF system is limited by mechanical damping and maximum stroke that allowed. Two-degree-of-freedom (2DOF) energy-harvesting systems was proposed in recent years and has been shown to have the potential to have better power, power/stroke ratio, and frequency bandwidth performance compared with SDOF systems. However, extra mass has to be added in most of the case. In this paper, a new design of inerter-based-2DOF energy-harvesting system was proposed by adding a spring in series with the inerter in SDOF system. No extra mass is added compared with its counterpart SDOF system. Optimal specific power at limited stroke were obtained by tuning system parameters, which includes resonance frequency ratio, spring ratio, mass ratio, and damping ratio. The contribution of each parameter to system performance was analyzed. The results show that the proposed inerter-based-2DOF system has better performance compared with the SDOF system. The inerter-based-2DOF can have larger specific power and larger power/stroke ratio over a wider frequency bandwidth. Simulation also show that improved performance not only obtained with sinusoidal excitation with constant displacement amplitude, but also with sinusoidal excitation with constant force amplitude.


Sign in / Sign up

Export Citation Format

Share Document