P-Spice Modeling Three-Dimensional Propagation of Ultrasound Diffraction Considering a Gaussian Beam Approach

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Soucrati Hanane ◽  
Chitnalah Ahmed ◽  
Aouzale Noureddine ◽  
El Idrissi Abdelaziz

In this paper, we propose a new method for simulating three-dimensional (3D) ultrasonic wave propagation using P-Spice like simulator. We use a one-dimensional transmission line model to implement the diffraction losses. In order to simulate the beam pattern considering axial and radial orientations, we calculate the diffraction losses in 3D space. First, we express the radiated field using a set of Gaussian beams. Calculating the average pressure over the receiver surface allows us to determine the diffraction losses. These losses are then incorporated into the P-Spice model via the G parameter which is axial and radial orientations dependent. Comparison between P-Spice simulation and analytical model results shows good agreements.

2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


2020 ◽  
Vol 12 (5) ◽  
Author(s):  
Zilong Li ◽  
Songming Hou ◽  
Thomas C. Bishop

Abstract The Magic Snake (Rubik’s Snake) is a toy that was invented decades ago. It draws much less attention than Rubik’s Cube, which was invented by the same professor, Erno Rubik. The number of configurations of a Magic Snake, determined by the number of discrete rotations about the elementary wedges in a typical snake, is far less than the possible configurations of a typical cube. However, a cube has only a single three-dimensional (3D) structure while the number of sterically allowed 3D conformations of the snake is unknown. Here, we demonstrate how to represent a Magic Snake as a one-dimensional (1D) sequence that can be converted into a 3D structure. We then provide two strategies for designing Magic Snakes to have specified 3D structures. The first enables the folding of a Magic Snake onto any 3D space curve. The second introduces the idea of “embedding” to expand an existing Magic Snake into a longer, more complex, self-similar Magic Snake. Collectively, these ideas allow us to rapidly list and then compute all possible 3D conformations of a Magic Snake. They also form the basis for multidimensional, multi-scale representations of chain-like structures and other slender bodies including certain types of robots, polymers, proteins, and DNA.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramon Droop ◽  
Eric Asché ◽  
Eileen Otte ◽  
Cornelia Denz

AbstractWe extend the established transverse customization of light, in particular, amplitude, phase, and polarization modulation of the light field, and its analysis by the third, longitudinal spatial dimension, enabling the visualization of longitudinal structures in sub-wavelength (nm) range. To achieve this high-precision and three-dimensional beam shaping and detection, we propose an approach based on precise variation of indices in the superposition of higher-order Laguerre-Gaussian beams and cylindrical vector beams in a counter-propagation scheme. The superposition is analyzed experimentally by digital, holographic counter-propagation leading to stable, reversible and precise scanning of the light volume. Our findings show tailored amplitude, phase and polarization structures, adaptable in 3D space by mode indices, including sub-wavelength structural changes upon propagation, which will be of interest for advanced material machining and optical trapping.


2003 ◽  
Vol 125 (1) ◽  
pp. 131-142 ◽  
Author(s):  
Dante A. Elı´as ◽  
Luciano E. Chiang

We present a numerical method derived from the Impulse-Linear Momentum Principle that can be used in the design of impact tools for rock drilling. This method allows the prediction of energy transmission to rock, the profiles of stress, displacement and velocity, all of which are important in the dynamic analysis of such tools. Using the Impulse-Linear Momentum Principle in an algorithmic manner, multibody interaction is simplified, and also different load and boundary conditions such as external forces, initial strains, and initial body separations can be directly considered. The accuracy of the method has been contrasted theoretically with both one-dimensional and three-dimensional FEM analysis, as well as experimentally.


1981 ◽  
Vol 48 (4) ◽  
pp. 743-748 ◽  
Author(s):  
T. C. T. Ting

Characteristic forms of differential equations for wave propagation in nonlinear media are derived directly from equations of motion and equations which combine the constitutive equations and the equations of continuity. Both Lagrangian coordinates and Eulerian coordinates are considered. The constitutive equations considered here apply to a large class of nonlinear materials. The characteristic forms derived here clearly show which components of the stress and velocity are involved in the differentiation along the bicharacteristics. Moreover, the reduction to one-dimensional cases from three-dimensional problems is obvious for the characteristic forms obtained here. Examples are given and compared with the known solution in the literature for wave propagation in linear isotropic elastic solids and isentropic compressible fluids.


2004 ◽  
Vol 820 ◽  
Author(s):  
Z. Huang ◽  
D.A. Dikin ◽  
W. Ding ◽  
Y. Qiao ◽  
Y. Fridman ◽  
...  

AbstractNanostructures, such as nanowires, nanotubes, and nanocoils, can be described in many cases as quasi one-dimensional (1D) curved objects projecting in three-dimensional (3D) space. A parallax method to reconstruct the correct three-dimensional geometry of such 1D nanostructures is presented. A series of images were acquired at different view angles, and from those image pairs, 3D representations were constructed using a MATLAB program. Error analysis as a function of view-angle between the two images is discussed. As an example application, we demonstrate the importance of knowing the true 3D shape of Boron nanowires. Without precise knowledge of the nanowire's dimensions, diameter and length, mechanical resonance data cannot be properly fit to obtain an accurate estimate of the Young's modulus.


Sign in / Sign up

Export Citation Format

Share Document