Characteristic Forms of Differential Equations for Wave Propagation in Nonlinear Media

1981 ◽  
Vol 48 (4) ◽  
pp. 743-748 ◽  
Author(s):  
T. C. T. Ting

Characteristic forms of differential equations for wave propagation in nonlinear media are derived directly from equations of motion and equations which combine the constitutive equations and the equations of continuity. Both Lagrangian coordinates and Eulerian coordinates are considered. The constitutive equations considered here apply to a large class of nonlinear materials. The characteristic forms derived here clearly show which components of the stress and velocity are involved in the differentiation along the bicharacteristics. Moreover, the reduction to one-dimensional cases from three-dimensional problems is obvious for the characteristic forms obtained here. Examples are given and compared with the known solution in the literature for wave propagation in linear isotropic elastic solids and isentropic compressible fluids.

2015 ◽  
Vol 770 ◽  
pp. 156-188 ◽  
Author(s):  
Patricio Winckler ◽  
Philip L.-F. Liu

A cross-sectionally averaged one-dimensional long-wave model is developed. Three-dimensional equations of motion for inviscid and incompressible fluid are first integrated over a channel cross-section. To express the resulting one-dimensional equations in terms of the cross-sectional-averaged longitudinal velocity and spanwise-averaged free-surface elevation, the characteristic depth and width of the channel cross-section are assumed to be smaller than the typical wavelength, resulting in Boussinesq-type equations. Viscous effects are also considered. The new model is, therefore, adequate for describing weakly nonlinear and weakly dispersive wave propagation along a non-uniform channel with arbitrary cross-section. More specifically, the new model has the following new properties: (i) the arbitrary channel cross-section can be asymmetric with respect to the direction of wave propagation, (ii) the channel cross-section can change appreciably within a wavelength, (iii) the effects of viscosity inside the bottom boundary layer can be considered, and (iv) the three-dimensional flow features can be recovered from the perturbation solutions. Analytical and numerical examples for uniform channels, channels where the cross-sectional geometry changes slowly and channels where the depth and width variation is appreciable within the wavelength scale are discussed to illustrate the validity and capability of the present model. With the consideration of viscous boundary layer effects, the present theory agrees reasonably well with experimental results presented by Chang et al. (J. Fluid Mech., vol. 95, 1979, pp. 401–414) for converging/diverging channels and those of Liu et al. (Coast. Engng, vol. 53, 2006, pp. 181–190) for a uniform channel with a sloping beach. The numerical results for a solitary wave propagating in a channel where the width variation is appreciable within a wavelength are discussed.


2019 ◽  
Vol 4 (1) ◽  
pp. 149-155
Author(s):  
Kholmatzhon Imomnazarov ◽  
Ravshanbek Yusupov ◽  
Ilham Iskandarov

This paper studies a class of partial differential equations of second order , with arbitrary functions and , with the help of the group classification. The main Lie algebra of infinitely infinitesimal symmetries is three-dimensional. We use the method of preliminary group classification for obtaining the classifications of these equations for a one-dimensional extension of the main Lie algebra.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 553 ◽  
Author(s):  
Essam R. El-Zahar ◽  
Abdelhalim Ebaid ◽  
Abdulrahman F. Aljohani ◽  
José Tenreiro Machado ◽  
Dumitru Baleanu

This paper re-analyzes the falling body problem in three dimensions, taking into account the effect of the Earth’s rotation (ER). Accordingly, the analytic solution of the three-dimensional model is obtained. Since the ER is quite slow, the three coupled differential equations of motion are usually approximated by neglecting all high order terms. Furthermore, the theoretical aspects describing the nature of the falling point in the rotating frame and the original inertial frame are proved. The theoretical and numerical results are illustrated and discussed.


Author(s):  
A Sinaie ◽  
A Ziaie

The equations of particle motion in an elastic isotropic stressed medium are first derived in Cartesian coordinates and then transformed into cylindrical coordinates. The three components of the equations of motion are non-linear partial differential equations and cannot be of use in practical applications. However, noting that the particle displacement is composed of a small dynamic part superimposed on a large static part, these equations are linearized via a simple perturbation method. The linearized equations are presented in closed form. They contain variables, which may be measured and experimented upon in practice, in the field of acoustoelasticity.


2019 ◽  
Vol 24 (12) ◽  
pp. 3806-3822
Author(s):  
A Amiri-Hezaveh ◽  
P Karimi ◽  
M Ostoja-Starzewski

A stress-based approach to the analysis of linear electro-magneto-elastic materials is proposed. Firstly, field equations for linear electro-magneto-elastic solids are given in detail. Next, as a counterpart of coupled governing equations in terms of the displacement field, generalized stress equations of motion for the analysis of three-dimensional (3D) problems Are obtained – they supply a more convenient basis when mechanical boundary conditions are entirely tractions. Then, a sufficient set of conditions for the corresponding solution of generalized stress equations of motion to be unique are detailed in a uniqueness theorem. A numerical passage to obtain the solution of such equations is then given by generalizing a reciprocity theorem in terms of stress for such materials. Finally, as particular cases of the general 3D form, the stress equations of motion for planar problems (plane strain and Generalized plane stress) for transversely isotropic media are formulated.


1969 ◽  
Vol 91 (1) ◽  
pp. 251-265 ◽  
Author(s):  
J. J. Uicker

Part 1: Over the past several years, the matrix method of linkage analysis has been developed to give the kinematic, static and dynamic force, error, and equilibrium analyses of three-dimensional mechanical linkages. This two-part paper is an extension of these methods to include some aspects of dynamic analysis. In Part 1, expressions are developed for the kinetic and potential energies of a system consisting of a multiloop, multi-degree-of-freedom spatial linkage having springs and damping devices in any or all of its joints, and under the influence of gravity as well as time varying external forces. Using the Lagrange equations, the exact differential equations governing the motion of such a system are derived. Although these equations cannot be solved directly, they form the basis for the solution of more restricted problems, such as a linearized small oscillation analysis which forms Part 2 of the paper. Part 2: This paper is a direct extension of Part 1 and it is assumed that the reader has a thorough knowledge of the previous material. Assuming that the spatial linkage has a stable position of static equilibrium and oscillates with small displacements and small velocities about this position, the general differential equations of motion are linearized to describe these oscillations. The equations lead to an eigenvalue problem which yields the resonant frequencies and associated damping constants of the system for the equilibrium position. Laplace transformations are then used to solve the linearized equations. Digital computer programs have been written to lest these methods and an example solution dealing with a vehicle suspension is presented.


2018 ◽  
Vol 3 (2) ◽  
pp. 409-418 ◽  
Author(s):  
Chaudry Masood Khalique ◽  
Oke Davies Adeyemo ◽  
Innocent Simbanefayi

AbstractIn this paper we study the modified equal-width equation, which is used in handling simulation of a single dimensional wave propagation in nonlinear media with dispersion processes. Lie point symmetries of this equation are computed and used to construct an optimal system of one-dimensional subalgebras. Thereafter using an optimal system of one-dimensional subalgebras, symmetry reductions and new group-invariant solutions are presented. The solutions obtained are cnoidal and snoidal waves. Furthermore, conservation laws for the modified equal-width equation are derived by employing two different methods, the multiplier method and Noether approach.


Sign in / Sign up

Export Citation Format

Share Document