A New Method to the Elastodynamic Response of a Spherical Shell Under the Impact Load

2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Shugen Xu ◽  
Yang Wei ◽  
Chong Wang ◽  
Weiqiang Wang

In this paper, a new methodology for solving response of a spherical shell based on developed solution structure theorem has been proposed. It can be used to solve the wave equation about the structural dynamic response of a spherical shell under the impact pressure. The proposed method can be used to solve a batch of partial differential equations having the similar governing equation with different initial and boundary conditions. A detailed solving procedure has been provided to show how to use this method correctly. Finally, a practical example is provided to show how to use the proposed method to solving the elastodynamic response of a spherical shell under inner impact load.

Author(s):  
Shugen Xu ◽  
Weiqiang Wang ◽  
Yan Liu

In this paper, a generalized solution structure theorem has been provided. It can be use to solve the wave equation about the structural response of cylinder under the dynamic pressure. This new approach also can be used to solve a batch of partial differential equations with the similar form. A detailed derivation process has been given to show how the solution is obtained. Finally, a practical example is presented, and all the elastodynamic response data at any point during dynamic pressure can be acquired conveniently.


2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Shugen Xu ◽  
Weiqiang Wang ◽  
Yuliang Cui ◽  
Yan Liu

In this paper, a developed solution structure theorem has been provided. It can be used to solve the wave equation about the structural response of cylinder under the dynamic pressure. This new approach also can be used to solve a batch of partial differential equations having the similar form. A detailed derivation process has been given to show how the solution is obtained. Finally, a practical example is presented, and the finite element result is also provided to validate the accuracy of methodology proposed in this paper. The result shows that it has a high accuracy for solving the elastodynamic response of the cylinder.


2010 ◽  
Vol 163-167 ◽  
pp. 327-331 ◽  
Author(s):  
Liang Zheng ◽  
Zhi Hua Chen

Finite element model of both the single-layer Schwedler reticulated dome with the span of 50m and a Cuboid impactor were developed, incorporating ANSYS/LS-DYNA. PLASTIC_KINEMATIC (MAT_003) material model which takes stain rate into account was used to simulate steel under impact load. The automatic point to surface contact (NODES TO SURFACE) was applied between the dome and impact block. Three stages of time history curve of the impact force on the apex of the single-layer Scheduler reticulated dome including the impact stage, stable stalemate stage, the decaying stage were generalized according to its dynamic response. It must be pointed out that the peak of the impact force of the single-layer reticulated dome increase with the increase of the weight and the velocity of the impact block, but the change of the velocity of the impact block is more sensitive than the change of weight of the impact block for the effect of the peak of the impact force, and a platform value of the impact force of the single-layer reticulated dome change near a certain value, and the duration time of the impact gradually increase. Then four stages of time history curve of the impact displacement were proposed according to the dynamic response of impact on the apex of the single-layer reticulated dome based on numerical analysis. Four stages include in elastic deformation stage, plastic deformation stage, elastic rebound stage, free vibration stage in the position of the residual deformation.


2013 ◽  
Vol 364 ◽  
pp. 172-176
Author(s):  
Hui Wei Yang ◽  
Bin Qin ◽  
Zhi Jun Han ◽  
Guo Yun Lu

The dynamic response of fluid-filled hemispherical shell in mass impact is studied by experiment using DHR9401. Combining the time history of impact force with experimental observation of the deformation process, it can be seen that the dynamic response can be divided into four stages: the flattening around the impact point, the forming and expanding outward of shell plastic hinge, the plastic edge region flatten by the punch, and elastic recovery. The experimental results show that: Because the shell filled with liquid, the local impact load that the shell suffered is translated into area load and loads on the inner shell uniformly, so that it has a high carrying capacity. Numerical simulation is used to study the time history of energy absorption of different shell structures. The result shows that the crashworthiness of sandwich fluid-filled shell is improved greatly. Under the certain impact energy, deformation of its inner shell is very small, which can provide effective security space.


2020 ◽  
Vol 24 (1) ◽  
pp. 3-16 ◽  
Author(s):  
Changjiang Liu ◽  
Fan Wang ◽  
Xiaowei Deng ◽  
Song Pang ◽  
Jian Liu ◽  
...  

The membrane structure is a flexible structure, which is easy to vibrate or even relax under dynamic load. Engineering accident analysis shows that the relaxation of membrane structure is more likely to lead to structural failure. In this article, the impact load problem is combined with the flexible structure to analyze the impact of hailstone impact load on the dynamic response of membrane structure. First, the umbrella membrane stretching device was designed and manufactured, and the hailstone impact test was carried out on the umbrella membrane structure with polyvinyl chloride membrane material. Dynamic response data, tension relaxation of side cables and vibration deformation of umbrella membrane structures impacted by hailstones with different sizes and different characteristic points were obtained. In the numerical analysis, the form-finding analysis of umbrella membrane structure is carried out by finite element method, and the transient impact analysis is conducted in LS-DYNA. Finally, the reliability of the research results is verified by comparing the numerical and experimental results. The general laws and conclusions are drawn and the disaster-causing mechanism of membrane structure impacted by hailstone is revealed. On the whole, although the probability of hailstone destroying the membrane material directly is very small, it will relax the membrane structure and affect the safety of membrane structure. The conclusions of this article provide a theoretical basis for the design and maintenance of membrane structures.


2011 ◽  
Vol 211-212 ◽  
pp. 576-580 ◽  
Author(s):  
Ming Song ◽  
Shi Rong Ge ◽  
Hai Feng Fang

In order to research the problem of rescue chamber colliding with the tunnel wall. The theoretical model of rescue chamber has been formed, based on the principle of energy conservation, by using theories of plates and shells, large deformed plate and shell, and by analysis of dynamic response of mine rescue chamber under axial impact load. This model includes initial velocity, contact force deformation energy and shell deformation. Dytran software was applied to build the finite element model of the rescue chamber contacting the rigid plate. Through comparison emulation result and theoretical analysis result, this model is proved to be highly reliable. The theoretical calculation and the simulation indicated that there were obvious relationships among the ability of the mine rescue chamber under axial impact load with the thickness, depth of flat spherical shells. If the thickness or depth increases, then the chamber could stand more. It is also confirmed that increasing the depth of flat spherical shells can minish the impact force for making impact process abate, which provides a basis for the research of rescue chamber.


Author(s):  
Jiang Zhou ◽  
Ratna P. Niraula ◽  
Kendrick Aung

The objective of this paper is to develop an analytical or mathematical predicative model for the evaluation of dynamic response of a structural element in a microelectronic or an optoelectronic product to an impact load occurring as a result of drop or shock test. Closed-form theoretical solution was obtained to simulate the board level drop test. The block diagram based SIMULINK analysis was introduced to determine the response with various impact configurations for the system level drop test as well. This study will help reliability engineers to design the impact input profiles and obtain the desired responses, and to calibrate and validate finite element analysis results quickly for both board level and system level drop test. It was found that time durations of the input profiles play an important role in the dynamic response. The system response can be designed by carefully choosing the impact time duration. Certain input pulse time results in the response with very low ringing after first or second peaks.


2013 ◽  
Vol 639-640 ◽  
pp. 859-865
Author(s):  
Qiao Yun Wu ◽  
Hong Ping Zhu

The orthogonal polynomial expansion method expression of stochastic structure was deduced. Then, based on orthogonal polynomial expansion method, taking a 20-storey reinforced concrete frame structure as an example, the impact of the randomness of structural parameters on time history response was researched. Meanwhile, in order to verify the correctness of analysis program, the calculation results of orthogonal polynomial expansion method were compared with the Monte-Carlo method which based on Newmark integral. The results show that it can get relatively accurate results when the number of terms of the orthogonal polynomial is 5. Structural mass and stiffness have a greater impact on the structural dynamic response. And the greater number of random parameters, the greater the impact on structural dynamic response.


Sign in / Sign up

Export Citation Format

Share Document