scholarly journals Increased Red Blood Cell Stiffness Increases Pulmonary Vascular Resistance and Pulmonary Arterial Pressure

2016 ◽  
Vol 138 (2) ◽  
Author(s):  
David A. Schreier ◽  
Omid Forouzan ◽  
Timothy A. Hacker ◽  
John Sheehan ◽  
Naomi Chesler

Patients with sickle cell anemia (SCD) and pulmonary hypertension (PH) have a significantly increased risk of sudden death compared to patients with SCD alone. Sickled red blood cells (RBCs) are stiffer, more dense, more frequently undergo hemolysis, and have a sixfold shorter lifespan compared to normal RBCs. Here, we sought to investigate the impact of increased RBC stiffness, independent of other SCD-related biological and mechanical RBC abnormalities, on the hemodynamic changes that ultimately cause PH and increase mortality in SCD. To do so, pulmonary vascular impedance (PVZ) measures were recorded in control C57BL6 mice before and after ∼50 μl of blood (Hct = 45%) was extracted and replaced with an equal volume of blood containing either untreated RBCs or RBCs chemically stiffened with glutaraldehyde (Hct = 45%). Chemically stiffened RBCs increased mean pulmonary artery pressure (mPAP) (13.5 ± 0.6 mmHg at baseline to 23.2 ± 0.7 mmHg after the third injection), pulmonary vascular resistance (PVR) (1.23 ± 0.11 mmHg*min/ml at baseline to 2.24 ± 0.14 mmHg*min/ml after the third injection), and wave reflections (0.31 ± 0.02 at baseline to 0.43 ± 0.03 after the third injection). Chemically stiffened RBCs also decreased cardiac output, but did not change hematocrit, blood viscosity, pulmonary arterial compliance, or heart rate. The main finding of this study is that increased RBC stiffness alone affects pulmonary pulsatile hemodynamics, which suggests that RBC stiffness plays an important role in the development of PH in patients with SCD.

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 779
Author(s):  
Daria S. Kostyunina ◽  
Paul McLoughlin

Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2–4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.


1983 ◽  
Vol 55 (2) ◽  
pp. 558-561 ◽  
Author(s):  
J. Lindenfeld ◽  
J. T. Reeves ◽  
L. D. Horwitz

In resting conscious dogs, administration of cyclooxygenase inhibitors results in modest increases in pulmonary arterial pressure and pulmonary vascular resistance, suggesting that vasodilator prostaglandins play a role in maintaining the low vascular resistance in the pulmonary bed. To assess the role of these vasodilator prostaglandins on pulmonary vascular resistance during exercise, we studied seven mongrel dogs at rest and during exercise before and after intravenous meclofenamate (5 mg/kg). Following meclofenamate, pulmonary vascular resistance rose both at rest (250 24 vs. 300 +/- 27 dyn . s . cm-5, P less than 0.01) and with exercise (190 +/- 9 vs. 210 +/- 12 dyn . s . cm-5, P less than 0.05). Systemic vascular resistance rose slightly following meclofenamate both at rest and during exercise. There were no changes in cardiac output. The effects of cyclooxygenase inhibition, although significant, were less during exercise than at rest. This suggests that the normal fall in pulmonary vascular resistance during exercise depends largely on factors other than vasodilator prostaglandins.


2015 ◽  
Vol 46 (4) ◽  
pp. 1178-1189 ◽  
Author(s):  
Denis Chemla ◽  
Edmund M.T. Lau ◽  
Yves Papelier ◽  
Pierre Attal ◽  
Philippe Hervé

Right ventricular adaptation to the increased pulmonary arterial load is a key determinant of outcomes in pulmonary hypertension (PH). Pulmonary vascular resistance (PVR) and total arterial compliance (C) quantify resistive and elastic properties of pulmonary arteries that modulate the steady and pulsatile components of pulmonary arterial load, respectively. PVR is commonly calculated as transpulmonary pressure gradient over pulmonary flow and total arterial compliance as stroke volume over pulmonary arterial pulse pressure (SV/PApp). Assuming that there is an inverse, hyperbolic relationship between PVR and C, recent studies have popularised the concept that their product (RC-time of the pulmonary circulation, in seconds) is “constant” in health and diseases. However, emerging evidence suggests that this concept should be challenged, with shortened RC-times documented in post-capillary PH and normotensive subjects. Furthermore, reported RC-times in the literature have consistently demonstrated significant scatter around the mean. In precapillary PH, the true PVR can be overestimated if one uses the standard PVR equation because the zero-flow pressure may be significantly higher than pulmonary arterial wedge pressure. Furthermore, SV/PApp may also overestimate true C. Further studies are needed to clarify some of the inconsistencies of pulmonary RC-time, as this has major implications for our understanding of the arterial load in diseases of the pulmonary circulation.


2020 ◽  
Vol 10 (3) ◽  
pp. 204589402093984
Author(s):  
Thomas S Metkus ◽  
Stephen C Mathai ◽  
Thorsten Leucker ◽  
Paul M Hassoun ◽  
Ryan J Tedford ◽  
...  

Background Whether right and left heart hemodynamics are associated with myocardial injury in the acute respiratory distress syndrome (ARDS) is not known. Methods We performed a retrospective cohort study of subjects who had right heart catheterization within the ALVEOLI trial and Fluid and Catheter Treatment Trial. Myocardial injury was assessed using a highly sensitive troponin assay (hsTn; Abbot ARCHITECT). Hemodynamic variables included right atrial pressure, pulmonary artery wedge pressure, cardiac index and stroke volume, pulmonary vascular resistance, pulmonary arterial compliance, and pulmonary effective arterial elastance. We performed linear, logistic, and Cox regression to determine the association of hemodynamic variables with myocardial injury and to determine if hemodynamics mediated the association between myocardial injury and death. Results Among 252 ARDS patients, median day 0 troponin was 65.4 (13.8–397.8) ng/L. Lower cardiac index (β −0.23 SE 0.10; P < 0.001) and stroke volume (β −0.26 SE 0.005; P < 0.001), higher pulmonary vascular resistance (β 0.22 SE 0.11; P < 0.001), lower pulmonary arterial compliance (β −0.24 SE 0.06; P < 0.001), and higher arterial elastance (β 0.27 SE 0.43; P < 0.001) were associated with greater myocardial injury in univariable and adjusted models. Changes in stroke volume, cardiac index, pulmonary arterial compliance, pulmonary vascular resistance, and arterial elastance were all associated with progressive myocardial injury over three days. hsTn levels were associated with mortality; however, the association was attenuated after adjustment for each of stroke volume, pulmonary vascular resistance, pulmonary arterial compliance, and arterial elastance. Conclusion Pulmonary vascular hemodynamics are associated with myocardial injury in ARDS, while filling pressures are not. Pulmonary vascular disease may represent a treatable contributor to myocardial injury in ARDS.


Respiration ◽  
2000 ◽  
Vol 67 (5) ◽  
pp. 502-506 ◽  
Author(s):  
Akira Nakamura ◽  
Norio Kasamatsu ◽  
Ikko Hashizume ◽  
Takushi Shirai ◽  
Suguru Hanzawa ◽  
...  

2006 ◽  
Vol 101 (3) ◽  
pp. 866-872 ◽  
Author(s):  
Darija Baković ◽  
Davor Eterović ◽  
Zoran Valic ◽  
Žana Saratlija-Novaković ◽  
Ivan Palada ◽  
...  

Changes in cardiovascular parameters elicited during a maximal breath hold are well described. However, the impact of consecutive maximal breath holds on central hemodynamics in the postapneic period is unknown. Eight trained apnea divers and eight control subjects performed five successive maximal apneas, separated by a 2-min resting interval, with face immersion in cold water. Ultrasound examinations of inferior vena cava (IVC) and the heart were carried out at times 0, 10, 20, 40, and 60 min after the last apnea. The arterial oxygen saturation level and blood pressure, heart rate, and transcutaneous partial pressures of CO2and O2were monitored continuously. At 20 min after breath holds, IVC diameter increased (27.6 and 16.8% for apnea divers and controls, respectively). Subsequently, pulmonary vascular resistance increased and cardiac output decreased both in apnea divers (62.8 and 21.4%, respectively) and the control group (74.6 and 17.8%, respectively). Cardiac output decrements were due to reductions in stroke volumes in the presence of reduced end-diastolic ventricular volumes. Transcutaneous partial pressure of CO2increased in all participants during breath holding, returned to baseline between apneas, but remained slightly elevated during the postdive observation period (∼4.5%). Thus increased right ventricular afterload and decreased cardiac output were associated with CO2retention and signs of peripheralization of blood volume. These results indicate that repeated apneas may cause prolonged hemodynamic changes after resumption of normal breathing, which may suggest what happens in sleep apnea syndrome.


Sign in / Sign up

Export Citation Format

Share Document