3D Printing of Instantaneous Turbulent Flame Shapes, Experimentally Captured by 3D-Computer Tomography and Multi-Directional Schlieren Photography

2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Yojiro Ishino ◽  
Naoki Hayashi ◽  
Yuta Ishiko ◽  
Ili Fatimah Bt Abd Razak ◽  
Yu Saiki ◽  
...  

Non-scanning 3D-CT(Computer Tomography) technique employing a multi-directional quantitative schlieren photographic system(top-left picture) with flash light source, has been performed to obtain instantaneous density distributions of high-speed turbulent flames(for reference, the target flame of 8 m/s exit velocity is indicated in the right-top picture). For simultaneous schlieren photography, the custom-made 20-directional schlieren camera was constructed and used. The target turbulent flame is high-speed flames, anchored on the burner of a nozzle exit of 4.2 mm diameter. The image set of 20 directional schlieren images are processed by MLEM CT-algorithm to obtain the 3D reconstruction of instantaneous density distribution. The solid models(bottom picture) of threshold density level of 0.7 kg/m3 are 3D-printed as 4 times large size for detail observations. The average exit velocity of the propane-air mixture of equivalence ratio of 1.1 is set to be 10, 8, 6 and 4 m/s (models from left to right in the bottom picture). The solid models show the complicated shape of the high speed turbulent flames. The flame structure of higher speed flame has fine scale corrugations. This corresponds to the “corrugated flamelets regime” of the Borghi & Peters diagram well.

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Yojiro Ishino ◽  
Naoki Hayashi ◽  
Yuta Ishiko ◽  
Kimihiro Nagase ◽  
Kazuma Kakimoto ◽  
...  

Non-scanning 3D-CT(Computer Tomography) technique employing a multi-directional quantitative schlieren photographic system with flash light source, has been performed to obtain instantaneous density distributions of spark-ignited laminar / turbulent flame kernels. For simultaneous schlieren photography, the custom-made 20-directional schlieren camera was constructed and used. The concept of the multi-directional shclieren system is shown in top-right figure. Each quantitative schlieren optical system, indicated in top-left figure, is characterized by a rectangular-shaped right source with uniform luminosity. Middle-left picture gives the appearance of the multi-directional schlieren camera. The flame kernels are made by spark ignition for a fuel-rich propane-air premixed gas (flow velocity :1.0 m/s, equivalence ratio :1.4 ). Spark electrodes of 0.4 mm diameter with 1.0 mm gap are used. First, development of laminar flame kernel is indicated in high-speed images of middle-right figure. 3D printed model of the CT reconstruction result (left in bottom-left photograph) shows the spherical shape of flame kernel with a pair of deep wrinkles. The wrinkle is considered to be caused by spark electrodes. Next turbulent flame kernel behind turbulence promoting grid is selected (turbulence intensity 0.26 m/s). The high-speed images of bottom-right figures show corrugated flame shape. 3D model of CT result (right in bottom-left photo.) expresses the instantaneous 3D turbulent flame kernel shapes. These 3D solid models based on 3D-CT reconstructed data of 2 ms, are 3D-printed as 2 times large size for threshold density level of 0.7 kg/m3.


Author(s):  
Sean D. Salusbury ◽  
Ehsan Abbasi-Atibeh ◽  
Jeffrey M. Bergthorson

Differential diffusion effects in premixed combustion are studied in a counter-flow flame experiment for fuel-lean flames of three fuels with different Lewis numbers: methane, propane, and hydrogen. Previous studies of stretched laminar flames show that a maximum reference flame speed is observed for mixtures with Le ≳ 1 at lower flame-stretch values than at extinction, while the reference flame speed for Le ≪ 1 increases until extinction occurs when the flame is constrained by the stagnation point. In this work, counter-flow flame experiments are performed for these same mixtures, building upon the laminar results by using variable high-blockage turbulence-generating plates to generate turbulence intensities from the near-laminar u′/SLo=1 to the maximum u′/SLo achievable for each mixture, on the order of u′/SLo=10. Local, instantaneous reference flamelet speeds within the turbulent flame are extracted from high-speed PIV measurements. Instantaneous flame front positions are measured by Rayleigh scattering. The probability-density functions (PDFs) of instantaneous reference flamelet speeds for the Le ≳ 1 mixtures illustrate that the flamelet speeds are increasing with increasing turbulence intensity. However, at the highest turbulence intensities measured in these experiments, the probability seems to drop off at a velocity that matches experimentally-measured maximum reference flame speeds in previous work. In contrast, in the Le ≪ 1 turbulent flames, the most-probable instantaneous reference flamelet speed increases with increasing turbulence intensity and can, significantly, exceed the maximum reference flame speed measured in counter-flow laminar flames at extinction, with the PDF remaining near symmetric for the highest turbulence intensities. These results are reinforced by instantaneous flame position measurements. Flame-front location PDFs show the most probable flame location is linked both to the bulk flow velocity and to the instantaneous velocity PDFs. Furthermore, hydrogen flame-location PDFs are recognizably skewed upstream as u′/SLo increases, indicating a tendency for the Le ≪ 1 flame brush to propagate farther into the unburned reactants against a steepening average velocity gradient.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Gordon Fru ◽  
Gábor Janiga ◽  
Dominique Thévenin

Parametric direct numerical simulations (DNS) of turbulent premixed flames burning methane in the thin reaction zone regime have been performed relying on complex physicochemical models and taking into account volume viscosity (κ). The combined effect of increasing turbulence intensities (u′) andκon the resulting flame structure is investigated. The turbulent flame structure is marred with numerous perforations and edge flame structures appearing within the burnt gas mixture at various locations, shapes and sizes. Stepping upu′from 3 to 12 m/s leads to an increase in the scaled integrated heat release rate from 2 to 16. This illustrates the interest of combustion in a highly turbulent medium in order to obtain high volumetric heat release rates in compact burners. Flame thickening is observed to be predominant at high turbulent Reynolds number. Via ensemble averaging, it is shown that both laminar and turbulent flame structures are not modified byκ. These findings are in opposition to previous observations for flames burning hydrogen, where significant modifications induced byκwere found for both the local and global properties of turbulent flames. Therefore, to save computational resources, we suggest that the volume viscosity transport term be ignored for turbulent combustion DNS at low Mach numbers when burning hydrocarbon fuels.


2010 ◽  
Vol 44-47 ◽  
pp. 2793-2797
Author(s):  
Xian Feng Chen ◽  
Y. Zhang ◽  
M. Chen ◽  
Shao Feng Ren ◽  
Xiao L. Song

To prevent and control fire and explosion disasters, the premixed methane-air explosion was performed under restricted condition. In the experiment, the high speed schlieren photography system was used to record the flame characteristics and propagation mechanism. At the same time the ion current probe was used to reveal the inner flame structure characteristics. Based on the images of High Speed Schlieren Photography, the flame acceleration and flame structure were discussed in detail. In addition, the flow field characteristic of explosion flame was disclosed clearly. The microscopic evolving process of laminar-turbulent transition was accomplished in the period of flame structure change. As an alternative observation and detect technique, the high speed schlieren photograph system was used to capture flame front microstructure dynamic process precisely. Based on burning chemical and explosive dynamics, the optical measure method can record flame dynamic behavior visually, which further helps to disclose flame microstructure characteristic and the inner dynamic mechanism.


Author(s):  
Ehsan Abbasi-Atibeh ◽  
Sandeep Jella ◽  
Jeffrey M. Bergthorson

Sensitivity to stretch and differential diffusion of chemical species are known to influence premixed flame propagation, even in the turbulent environment where mass diffusion can be greatly enhanced. In this context, it is convenient to characterize flames by their Lewis number (Le), a ratio of thermal-to-mass diffusion. The work reported in this paper describes a study of flame stabilization characteristics when the Le is varied. The test data is comprised of Le ≪ 1 (Hydrogen), Le ≈ 1 (Methane), and Le > 1 (Propane) flames stabilized at various turbulence levels. The experiments were carried out in a Hot exhaust Opposed-flow Turbulent Flame Rig (HOTFR), which consists of two axially-opposed, symmetric turbulent round jets. The stagnation plane between the two jets allows the aerodynamic stabilization of a flame, and clearly identifies fuel influences on turbulent flames. Furthermore, high-speed Particle Image Velocimetry (PIV), using oil droplet seeding, allowed simultaneous recordings of velocity (mean and rms) and flame surface position. These experiments, along with data processing tools developed through this study, illustrated that in the mixtures with Le ≪ 1, turbulent flame speed increases considerably compared to the laminar flame speed due to differential diffusion effects, where higher burning rates compensate for the steepening average velocity gradient, and keeps these flames almost stationary as bulk flow velocity increases. These experiments are suitable for validating the ability of turbulent combustion models to predict lifted, aerodynamically-stabilized flames. In the final part of this paper, we model the three fuels at two turbulence intensities using the FGM model in a RANS context. Computations reveal that the qualitative flame stabilization trends reproduce the effects of turbulence intensity, however, more accurate predictions are required to capture the influences of fuel variations and differential diffusion.


Author(s):  
M. P. Auer ◽  
C. Hirsch ◽  
T. Sattelmayer

This paper discusses the structural changes observed in oscillating premixed turbulent swirling flames and demonstrates the influence of modulated mass flows on the flame dynamics in a preheated atmospheric test rig with a natural gas fired swirl burner. The experimentally investigated self excited and forced combustion oscillations of swirl stabilized premixed flames show varying time delays between the acoustically driven mass flow oscillations and the integral heat release rate of the flame. High speed films of the OH*-chemiluminescence reveal how the flame structure changes with the oscillation frequency and the phase angle between the fuel mass flow oscillation and the total mass flow at the burner exit. These parameters are found determine the spatial and temporal heat release distribution and thus the net heat release fluctuation. Therefore, the spatial and temporal heat release distribution along the flame length has an influence on the thermoacoustic coupling, even in the case of acoustically compact flames. The observed phenomena are discussed further using an 1-d analytical model. It underscores that for swirl stabilized premixed turbulent flames the dynamics of the flow field perturbation play a major role in creating the effective heat release fluctuation.


1994 ◽  
Vol 281 ◽  
pp. 1-32 ◽  
Author(s):  
M. Baum ◽  
T. J. Poinsot ◽  
D. C. Haworth ◽  
N. Darabiha

Premixed H2/O2/N2 flames propagating in two-dimensional turbulence have been studied using direct numerical simulations (DNS: simulations in which all fluid and thermochemical scales are fully resolved). Simulations include realistic chemical kinetics and molecular transport over a range of equivalence ratios Φ (Φ = 0.35, 0.5, 0.7, 1.0, 1.3). The validity of the flamelet assumption for premixed turbulent flames is checked by comparing DNS data and results obtained for steady strained premixed flames with the same chemistry (flamelet ‘library’). This comparison shows that flamelet libraries overestimate the influence of stretch on flame structure. Results are also compared with earlier zero-chemistry (flame sheet) and one-step chemistry simulations. Consistent with the simpler models, the turbulent flame with realistic chemistry aligns preferentially with extensive strain rates in the tangent plane and flame curvature probability density functions are close to symmetric with near-zero means. For very lean flames it is also found that the local flame structure correlates with curvature as predicted by DNS based on simple chemistry. However, for richer flames, by contrast to simple-chemistry results with non-unity Lewis numbers (ratio of thermal to species diffusivity), local flame structure does not correlate with curvature but rather with tangential strain rate. Turbulent straining results in substantial thinning of the flame relative to the steady unstrained laminar case. Heat-release and H2O2 contours remain thin and connected (‘flamelet-like’) while species including H-atom and OH are more diffuse. Peak OH concentration occurs well behind the peak heat-release zone when the flame temperature is high (of the order of 2800 K). For cooler and leaner flames (about 1600 K and for an equivalence ratio below 0.5) the OH radical is concentrated near the reaction zone and the maximum OH level provides an estimate of the local flamelet speed as assumed by Becker et al. (1990).


2001 ◽  
Vol 17 (2) ◽  
pp. 93-101 ◽  
Author(s):  
S. I. Yang ◽  
S. S. Shy

ABSTRACTThe fractal properties of premixed transient flames propagating downwards through a near-isotropic turbulent flow field in a fan-stirred cruciform burner were investigated. The long vertical section of the cruciform burner was used to provide a downward propagating premixed flame at 1 atm. The large horizontal vessel equipped with a pair of counter-rotating fans and perforated plates at each end was used to generate near-isotropic turbulence. Turbulent flame front images were obtained using high-speed laser sheet imaging for both methane-air and propane-air mixtures. The nondimensional turbulent intensity (u′/SL), Reynolds number based on the integral length scale, and turbulent Karlovitz number were varied from 1 to 10, from 698 to 6032, and from 0.05 to 1.43, respectively. Hundreds of runs for each experimental condition were carried out to obtain sufficient images of these turbulent transient flame fronts just in the central uniform region. These images were then processed to extract fractal dimension, inner and outer cutoffs using both the circle and the caliper methods. It was found that the mean fractal dimension is only 2.18, nearly independent of u′/SL, in support of recent Bunsen-flame results found by Gülder and his co-workers. This contradicts the findings of many previous studies in which the fractal dimension may approach asymptotically to a value of 2.33 when u′/SL > 3. The inner (εi) and outer (ε0) cutoffs are found to be nearly constant for all flames studied, where ε0 is an order of magnitude greater than εi and it is smaller than the integral length scale of unreacted turbulence. Finally, the present fractal characteristics cannot predict turbulent burning velocities correctly when the available fractal closure model was used, indicating a limit of the fractal analysis on prediction of turbulent burning velocities.


Author(s):  
Ehsan Abbasi-Atibeh ◽  
Sandeep Jella ◽  
Jeffrey M. Bergthorson

Sensitivity to stretch and differential diffusion of chemical species are known to influence premixed flame propagation, even in the turbulent environment where mass diffusion can be greatly enhanced. In this context, it is convenient to characterize flames by their Lewis number (Le), a ratio of thermal-to-mass diffusion. The work reported in this paper describes a study of flame stabilization characteristics when Le is varied. The test data are comprised of Le≪1 (hydrogen), Le≈1 (methane), and Le>1 (propane) flames stabilized at various turbulence levels. The experiments were carried out in a hot exhaust opposed-flow turbulent flame rig (HOTFR), which consists of two axially opposed, symmetric jets. The stagnation plane between the two jets allows the aerodynamic stabilization of a flame and clearly identifies fuel influences on turbulent flames. Furthermore, high-speed particle image velocimetry (PIV), using oil droplet seeding, allowed simultaneous recordings of velocity (mean and rms) and flame surface position. These experiments, along with data processing tools developed through this study, illustrated that in the mixtures with Le≪1, turbulent flame speed increases considerably compared to the laminar flame speed due to differential diffusion effects, where higher burning rates compensate for the steepening average velocity gradient and keeps these flames almost stationary as bulk flow velocity increases. These experiments are suitable for validating the ability of turbulent combustion models to predict lifted, aerodynamically stabilized flames. In the final part of this paper, we model the three fuels at two turbulence intensities using the flamelet generated manifolds (FGM) model in a Reynolds-averaged Navier–Stokes (RANS) context. Computations reveal that the qualitative flame stabilization trends reproduce the effects of turbulence intensity; however, more accurate predictions are required to capture the influences of fuel variations and differential diffusion.


Sign in / Sign up

Export Citation Format

Share Document