A Design Framework for Optimizing the Mechanical Performance, Cost, and Environmental Impact of a Wind Turbine Tower

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Daniel Stratton ◽  
Daniel Martino ◽  
Felipe M. Pasquali ◽  
Kemper Lewis ◽  
John F. Hall

The tower represents a significant portion of the materials and cost of the small wind turbine system. Optimization techniques typically maximize the tower loading capability while reducing material use and cost. Still, tower design focuses mainly on structural integrity and durability. Moreover, tower motion that intensifies drivetrain and structural loads is only rarely considered. The environmental impact of the wind turbine must also be considered since wind energy promotes sustainability. Trade-offs between the structural performance, cost, and environmental impact are examined to guide the designer toward a sustainable alternative. Ultimately, an optimal design technique can be implemented and used to automate tower design. In this study, nine tower designs with different materials and geometries are analyzed using finite element analysis (FEA). The optimal tower design is selected using a multilevel-decision-making procedure. The analysis suggests that steel towers of minimal wall thickness are preferred. This study is a continuation of the previous work that optimized energy production and component life of small wind systems (Hall et al., 2015, “An Integrated Control and Design Framework for Optimizing Energy Capture and Component Life for a Wind Turbine Variable Ratio Gearbox,” ASME J. Sol. Energy Eng., 137(2), p. 021022). The long-term goal is to develop a tool that performs optimization and automated design of small wind systems. In our future work, the tower and drivetrain designs will be merged and studied using higher fidelity models.

Author(s):  
Daniel Stratton ◽  
Daniel Martino ◽  
Kemper Lewis ◽  
John Hall

Wind turbine tower design looks primarily at the structural integrity and durability of the tower. Optimization techniques are sometimes employed to maximize the loading capability while reducing material use and cost. Still, the tower is a dynamic part of a complex wind energy conversion system. During system operation, the tower is excited and sways back and forth. This undesirable movement increases cyclical loading on the tower and drivetrain components. To minimize this motion the tower frequency must be offset from the natural frequency of other components. Hence, it is necessary to look at the relationships that exist between the tower and other wind turbine components, such as the rotor, nacelle, and foundation. In addition, tradeoffs between cost, structural performance, and environmental impact can be examined to guide the designer toward a truly sustainable alternative to fossil fuels. Ultimately, an optimal design technique can be implemented and used to automate tower design. This work will introduce the analytical model and decision-making architecture that can be used to incorporate greater considerations in future studies. In this paper, nine wind turbine tower designs with different materials and geometries are analyzed using Finite Element Analysis (FEA). The optimal tower design is selected using a multi-level variation of the Hypothetical Equivalents and Inequivalents Method (HEIM). Using this analysis, a steel tower with variable thickness has been chosen. The findings reaffirm that steel is a favorable choice for turbine tower construction as it performs well on environmental, performance, and cost objectives. The method proposed in this work can be expanded to examine additional design goals and present a higher fidelity model of the wind turbine tower system in future work.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabhi Samant ◽  
Wei Wu ◽  
Shijia Zhao ◽  
Behram Khan ◽  
Mohammadali Sharzehee ◽  
...  

AbstractLeft main (LM) coronary artery bifurcation stenting is a challenging topic due to the distinct anatomy and wall structure of LM. In this work, we investigated computationally and experimentally the mechanical performance of a novel everolimus-eluting stent (SYNERGY MEGATRON) purpose-built for interventions to large proximal coronary segments, including LM. MEGATRON stent has been purposefully designed to sustain its structural integrity at higher expansion diameters and to provide optimal lumen coverage. Four patient-specific LM geometries were 3D reconstructed and stented computationally with finite element analysis in a well-validated computational stent simulation platform under different homogeneous and heterogeneous plaque conditions. Four different everolimus-eluting stent designs (9-peak prototype MEGATRON, 10-peak prototype MEGATRON, 12-peak MEGATRON, and SYNERGY) were deployed computationally in all bifurcation geometries at three different diameters (i.e., 3.5, 4.5, and 5.0 mm). The stent designs were also expanded experimentally from 3.5 to 5.0 mm (blind analysis). Stent morphometric and biomechanical indices were calculated in the computational and experimental studies. In the computational studies the 12-peak MEGATRON exhibited significantly greater expansion, better scaffolding, smaller vessel prolapse, and greater radial strength (expressed as normalized hoop force) than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY (p < 0.05). Larger stent expansion diameters had significantly better radial strength and worse scaffolding than smaller stent diameters (p < 0.001). Computational stenting showed comparable scaffolding and radial strength with experimental stenting. 12-peak MEGATRON exhibited better mechanical performance than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY. Patient-specific computational LM stenting simulations can accurately reproduce experimental stent testing, providing an attractive framework for cost- and time-effective stent research and development.


2011 ◽  
Vol 66-68 ◽  
pp. 1199-1206
Author(s):  
Samir Ahmad ◽  
Izhar-ul-Haq

In recent years the wind turbine blade has been the subject of comprehensive study and research amongst all other components of the wind turbine. As our appetite for renewable energy from the wind turbine continues to increase, companies now focus on rotor blades which can go up to 80m in length. The blade material not only have to face large aerodynamic, inertial and fatigue loads but are now being designed to endure environmental effects such as Ultraviolet degradation of surface, accumulation of dust particles at sandy locations, ice accretion on blades in cold countries, insect collision on blades and moisture ingress. All this is considered to ensure that the blades complete its designated life span. Furthermore exponential increase in composite blade manufacturing is causing a substantial amount of unrecyclable material. All these issues raise challenges for wind blade material use, its capacity to solve above mentioned problems and also maintain its structural integrity. This paper takes on this challenge by optimizing from the properties, merits, demerits and cost of different possible competing materials. Then the material is checked for its structural integrity through Finite Element Analysis simulation using standards like IEC-61400-1.This paper also shows the future direction of research by elaborating the influence nanotechnology can have in the improvement of the wind blade.


2015 ◽  
Vol 766-767 ◽  
pp. 534-538
Author(s):  
V. Sriram

Wind Turbine Industry is always seeking to improve and better its product options to its customers. One way of doing so is by bettering and optimizing its existing product offerings. The structural support component of a Wind Turbine Generator, which is approximately 15% of the total wind turbine cost and includes the tower and rotor yaw mechanism. It is possible to both discreetly increase the strength of the platforms and reduce its overall cost in terms of material costs by selecting suitable alternate material. The new platform is tested for stability under practical loading conditions by the Finite Element Analysis (FEA) using ANSYS software. The aim of the project is to minimize the cost and weight of the Service platform by 15-18% without compromising on its structural integrity interfaces.


2019 ◽  
Vol 44 (2) ◽  
pp. 168-180 ◽  
Author(s):  
Hicham Boudounit ◽  
Mostapha Tarfaoui ◽  
Dennoun Saifaoui ◽  
Mourad Nachtane

Wind energy is one among the most promising renewable energy sources, and hence there is fast growth of wind energy farm implantation over the last decade, which is expected to be even faster in the coming years. Wind turbine blades are complex structures considering the different scientific fields involved in their study. Indeed, the study of blade performance involves fluid mechanics (aerodynamic study), solids mechanics (the nature of materials, the type of solicitations …), and the fluid coupling structure (IFS). The scope of the present work is to investigate the mechanical performances and structural integrity of a large offshore wind turbine blade under critical loads using blade element momentum. The resulting pressure was applied to the blade by the use of a user subroutine “DLOAD” implemented in ABAQUS finite element analysis software. The main objective is to identify and predict the zones which are sensitive to damage and failure as well as to evaluate the potential of composite materials (carbon fiber and glass fiber) and their effect on reduction of rotor’s weight, as well as the increase of resistance to wear, and stiffness.


An alternative method used in generating energy is with the help of wind turbines utilizing power from the winds. The efficient extraction of energy hinges on the geometry and structure of the blade. The blade of wind turbine encounters high operational loads and undergoes fluctuating conditions of environment. The proposed work comprises of creating an exact model using CAD applications which includes the optimized geometry of the blade in addition with process verification of structural integrity, under several operating conditions by the means of finite element analysis. The prime motive of the proposed study is to check and evaluate the reliability of the blades by developing the entire geometry of the blade and performing failure analysis by altering load conditions. The construction of blade geometry is done by implementing the blade element momentum theory (BEMT) in order to retrieve the ultimate power coefficient at the required tip speed ratio of 7.05 by the means of optimization process. The NACA 63(4)-221 airfoil is used to create the primary design of blade. Blade with 14 m length has been taken for the present work for RRB V27-225 kW HAWT (horizontal axis wind turbine blade), which is an exclusive design of the blade. In order to perform analysis and modeling of the blade in presence and absence of shear web, two individual materials such as carbon fiber and glass fiber are taken in account. In the case of carbon fibre with shear web, the structural strength is improved which is shown in the results.


Author(s):  
Satchit Ramnath ◽  
Payam Haghighi ◽  
Jiachen Ma ◽  
Jami J. Shah ◽  
Duane Detwiler

Abstract Machine learning is opening up new ways of optimizing designs, but it requires large data sets for training and verification. The primary focus of this paper is to explain the trade-offs between generating a large data set and the level of idealization required to automate the process of generating such a data set. This paper discusses the efforts in curating a large CAD data set with the desired variety and validity of automotive body structures. A method to incorporate constraint networks to filter invalid designs, prior to the start of model generation is explained. Since the geometric configurations and characteristics need to be correlated to performance (structural integrity), the paper also demonstrates automated workflows to perform finite element analysis on 3D CAD models generated. Key simulation results can then be associated with CAD geometry and fed to the machine learning algorithms. With the increase in computing power and network speed, such datasets could assist in generating better designs, which could potentially be obtained by a combination of existing ones, or might provide insights into completely new design concepts meeting or exceeding the performance requirements. The approach is explained using the hood frame as an example, but the same can be adopted to other design components.


2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


Sign in / Sign up

Export Citation Format

Share Document