scholarly journals Computational and experimental mechanical performance of a new everolimus-eluting stent purpose-built for left main interventions

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Saurabhi Samant ◽  
Wei Wu ◽  
Shijia Zhao ◽  
Behram Khan ◽  
Mohammadali Sharzehee ◽  
...  

AbstractLeft main (LM) coronary artery bifurcation stenting is a challenging topic due to the distinct anatomy and wall structure of LM. In this work, we investigated computationally and experimentally the mechanical performance of a novel everolimus-eluting stent (SYNERGY MEGATRON) purpose-built for interventions to large proximal coronary segments, including LM. MEGATRON stent has been purposefully designed to sustain its structural integrity at higher expansion diameters and to provide optimal lumen coverage. Four patient-specific LM geometries were 3D reconstructed and stented computationally with finite element analysis in a well-validated computational stent simulation platform under different homogeneous and heterogeneous plaque conditions. Four different everolimus-eluting stent designs (9-peak prototype MEGATRON, 10-peak prototype MEGATRON, 12-peak MEGATRON, and SYNERGY) were deployed computationally in all bifurcation geometries at three different diameters (i.e., 3.5, 4.5, and 5.0 mm). The stent designs were also expanded experimentally from 3.5 to 5.0 mm (blind analysis). Stent morphometric and biomechanical indices were calculated in the computational and experimental studies. In the computational studies the 12-peak MEGATRON exhibited significantly greater expansion, better scaffolding, smaller vessel prolapse, and greater radial strength (expressed as normalized hoop force) than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY (p < 0.05). Larger stent expansion diameters had significantly better radial strength and worse scaffolding than smaller stent diameters (p < 0.001). Computational stenting showed comparable scaffolding and radial strength with experimental stenting. 12-peak MEGATRON exhibited better mechanical performance than the 9-peak MEGATRON, 10-peak MEGATRON, or SYNERGY. Patient-specific computational LM stenting simulations can accurately reproduce experimental stent testing, providing an attractive framework for cost- and time-effective stent research and development.

Author(s):  
Muhammad Abid ◽  
Abdul W. Awan

A number of analytical and experimental studies have been conducted to study ‘strength’ and ‘sealing capability’ of bolted flange joint only under internal pressure loading. Due to the ignorance of the external i.e. axial loading, the optimized performance of the bolted flange joint can not be achieved. A very limited work is found in literature under combined internal pressure and axial loading. In addition, the present design codes do not address the effects of axial loading on the structural integrity and sealing ability of the flange joints. From previous studies, non-gasketed joint is claimed to have better performance as compared to conventional gasketed joint. To investigate non-gasketed joint’s performance i.e. joint strength and sealing capability under combined internal pressure and any applied external loading, an extensive 3D nonlinear finite element analysis is carried out and overall joint performance and behavior is discussed.


2020 ◽  
Vol 318 ◽  
pp. 01025
Author(s):  
Mohammed S. Alqahtani

The use of external fixation devices is a very common method for the treatment of bone fractures. However, these fixators present some limitations in terms of mobility, significant risk of infection, and induce pain and discomfort. Moreover, they are also not fully customized to suit individual patients. To avoid these limitations, this paper presents a novel patient-specific external fixator developed using reverse engineering, finite element analysis and additive manufacturing. The fixator was designed based on a set of computer tomography (CT) scan images of a patient and optimized considering different thickness values and materials. New lightweight designs were produced through a manual process (regular distribution of circular and hexagonal voids) and topology optimization. Different polymeric materials (Polylactic acid (PLA); Acrylonitrile butadiene styrene (ABS) and Polyamide (PA)) were also considered for the fabrication of these designs. It was found that although both PLA and ABS allow to meet the design requirements, and that the best mechanical properties were obtained with fixators made of PLA. Results also showed that the best results in terms of mechanical performance and weight reduction was obtained with topology optimization.


2021 ◽  
Author(s):  
Hunter Smith

Abstract Blast and fire-resistant barrier walls are often required on offshore platforms to protect from accidental events. A wall structure designed for a probabilistic explosion event typically relies on inelastic response and plastic deformation to maintain a lightweight, efficient design. Design guides for such structures do not explicitly address how to account for the effects of interaction of blast and fire loading on structural performance and design acceptance criteria. If a wall assembly is required to provide rated fire and gas protection after an explosion event, it is generally assumed that structural integrity is maintained due to temperature increase limits (140°C) from the H-60/120 rated fire protection on the wall. This paper investigates the validity of this assumption for a typical offshore barrier wall designed to undergo permanent deformation during an initial blast event. The study was performed utilizing non-linear dynamic finite element analysis (FEA). FEA allows for design iteration, structural assessment, and validation against extreme load scenarios when testing of full-scale assembly may not be feasible. A typical wall structure was first analyzed for blast loading by non-linear dynamic structural analysis. Thermal loading from a subsequent hydrocarbon fire was then applied to observe the structural response in the post-blast damaged condition. Based on the rated temperature range, the resulting thermal expansion in the wall panels induces large stresses at the interface between wall panels and supporting steel. Non-linear FEA confirmed that yielding occurs which may increase existing plastic strains beyond design limits at locations of high stress concentration. Therefore, it is prudent to consider thermal performance in the design process, especially regarding connections and penetrations.


2006 ◽  
Vol 302-303 ◽  
pp. 713-719
Author(s):  
Zhi Gang Yan ◽  
Gui Ping Yan

In this paper, a series of Reactive powder concrete (RPC) footwalk braces without conventional steel bars are designed for the Qing-Zang railway. Experimental studies on the braces are conducted in order to test the mechanical character of the braces. Totally eight RPC footwalk braces are experimentally measured with static load. According to the analysis of the experimental results, the ratio of the crack load got from the experiment to the design load is 2.54 and the deflection ductile coefficient is 2.32. The experimental results show that the mechanical performance of RPC footwalk braces can satisfy the engineering requirements and there is enough safety margin for footwalk braces. A three-dimensional finite element analysis (FEA) is also carried out and the results of FEA are compared with that of the experiments. The results show that the FEA method can be used in designing the RPC footwalk braces.


2015 ◽  
Vol 8 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Peter Aquilina ◽  
William C. H. Parr ◽  
Uphar Chamoli ◽  
Stephen Wroe

Various patterns of internal fixation of mandibular condyle fractures have been proposed in the literature. This study investigates the stability of two patient-specific implants (PSIs) for the open reduction and internal fixation of a subcondylar fracture of the mandible. A subcondylar fracture of a mandible was simulated by a series of finite element models. These models contained approximately 1.2 million elements, were heterogeneous in bone material properties, and also modeled the muscles of mastication. Models were run assuming linear elasticity and isotropic material properties for bone. The stability and von Mises stresses of the simulated condylar fracture reduced with each of the PSIs were compared. The most stable of the plate configurations examined was PSI 1, which had comparable mechanical performance to a single 2.0 mm straight four-hole plate.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0256528
Author(s):  
Nataliya Perevoshchikova ◽  
Kevin M. Moerman ◽  
Bardiya Akhbari ◽  
Randy Bindra ◽  
Jayishni N. Maharaj ◽  
...  

Rupture of the scapholunate interosseous ligament can cause the dissociation of scaphoid and lunate bones, resulting in impaired wrist function. Current treatments (e.g., tendon-based surgical reconstruction, screw-based fixation, fusion, or carpectomy) may restore wrist stability, but do not address regeneration of the ruptured ligament, and may result in wrist functional limitations and osteoarthritis. Recently a novel multiphasic bone-ligament-bone scaffold was proposed, which aims to reconstruct the ruptured ligament, and which can be 3D-printed using medical-grade polycaprolactone. This scaffold is composed of a central ligament-scaffold section and features a bone attachment terminal at either end. Since the ligament-scaffold is the primary load bearing structure during physiological wrist motion, its geometry, mechanical properties, and the surgical placement of the scaffold are critical for performance optimisation. This study presents a patient-specific computational biomechanical evaluation of the effect of scaffold length, and positioning of the bone attachment sites. Through segmentation and image processing of medical image data for natural wrist motion, detailed 3D geometries as well as patient-specific physiological wrist motion could be derived. This data formed the input for detailed finite element analysis, enabling computational of scaffold stress and strain distributions, which are key predictors of scaffold structural integrity. The computational analysis demonstrated that longer scaffolds present reduced peak scaffold stresses and a more homogeneous stress state compared to shorter scaffolds. Furthermore, it was found that scaffolds attached at proximal sites experience lower stresses than those attached at distal sites. However, scaffold length, rather than bone terminal location, most strongly influences peak stress. For each scaffold terminal placement configuration, a basic metric was computed indicative of bone fracture risk. This metric was the minimum distance from the bone surface to the internal scaffold bone terminal. Analysis of this minimum bone thickness data confirmed further optimisation of terminal locations is warranted.


2021 ◽  
Author(s):  
Nataliya Perevoshchikova ◽  
Kevin Mattheus Moerman ◽  
Bardiya Akhbari ◽  
David J. Saxby ◽  
Jayishni N. Maharaj ◽  
...  

Rupture of the scapholunate interosseous ligament can cause the dissociation of scaphoid and lunate bones, resulting in impaired wrist function. Current treatments (e.g., tendon-based surgical reconstruction, screw-based fixation, fusion, or carpectomy) may restore wrist stability, but do not address regeneration of the ruptured ligament, and may result in wrist functional limitations and osteoarthritis. Recently a novel multiphasic bone-ligament-bone scaffold was proposed, which aims to reconstruct the ruptured ligament, and which can be 3D-printed using medical-grade polycaprolactone. This scaffold is composed of a central ligament-scaffold section and features a bone attachment terminal at either end. Since the ligament-scaffold is the primary load bearing structure during physiological wrist motion, its geometry, mechanical properties, and the surgical placement of the scaffold are critical for performance optimisation. This study presents a patient-specific computational biomechanical evaluation of the effect of scaffold length, and positioning of the bone attachment sites. Through segmentation and image processing of medical image data for natural wrist motion, detailed 3D geometries as well as patient-specific physiological wrist motion could be derived. This data formed the input for detailed finite element analysis, enabling computational of scaffold stress and strain distributions, which are key predictors of scaffold structural integrity. The computational analysis demonstrated that longer scaffolds present reduced peak scaffold stresses and a more homogeneous stress state compared to shorter scaffolds. Furthermore, it was found that scaffolds attached at proximal sites experience lower stresses than those attached at distal sites. However, scaffold length, rather than bone terminal location, most strongly influences peak stress. For each scaffold terminal placement configuration, a basic metric was computed indicative of bone fracture risk. This metric was the minimum distance from the bone surface to the internal scaffold bone terminal. Analysis of this minimum bone thickness data confirmed further optimisation of terminal locations is warranted.


2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Daniel Stratton ◽  
Daniel Martino ◽  
Felipe M. Pasquali ◽  
Kemper Lewis ◽  
John F. Hall

The tower represents a significant portion of the materials and cost of the small wind turbine system. Optimization techniques typically maximize the tower loading capability while reducing material use and cost. Still, tower design focuses mainly on structural integrity and durability. Moreover, tower motion that intensifies drivetrain and structural loads is only rarely considered. The environmental impact of the wind turbine must also be considered since wind energy promotes sustainability. Trade-offs between the structural performance, cost, and environmental impact are examined to guide the designer toward a sustainable alternative. Ultimately, an optimal design technique can be implemented and used to automate tower design. In this study, nine tower designs with different materials and geometries are analyzed using finite element analysis (FEA). The optimal tower design is selected using a multilevel-decision-making procedure. The analysis suggests that steel towers of minimal wall thickness are preferred. This study is a continuation of the previous work that optimized energy production and component life of small wind systems (Hall et al., 2015, “An Integrated Control and Design Framework for Optimizing Energy Capture and Component Life for a Wind Turbine Variable Ratio Gearbox,” ASME J. Sol. Energy Eng., 137(2), p. 021022). The long-term goal is to develop a tool that performs optimization and automated design of small wind systems. In our future work, the tower and drivetrain designs will be merged and studied using higher fidelity models.


1998 ◽  
Vol 26 (1) ◽  
pp. 51-62
Author(s):  
A. L. A. Costa ◽  
M. Natalini ◽  
M. F. Inglese ◽  
O. A. M. Xavier

Abstract Because the structural integrity of brake systems and tires can be related to the temperature, this work proposes a transient heat transfer finite element analysis (FEA) model to study the overheating in drum brake systems used in trucks and urban buses. To understand the mechanics of overheating, some constructive variants have been modeled regarding the assemblage: brake, rims, and tires. The model simultaneously studies the thermal energy generated by brakes and tires and how the heat is transferred and dissipated by conduction, convection, and radiation. The simulated FEA data and the experimental temperature profiles measured with thermocouples have been compared giving good correlation.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


Sign in / Sign up

Export Citation Format

Share Document