Stacking Fault Energy Maps of Fe–Mn–Al–C–Si Steels: Effect of Temperature, Grain Size, and Variations in Compositions

Author(s):  
O. A. Zambrano

A subregular solution thermodynamic model was employed to calculate the stacking fault energy (SFE) in Fe–Mn–Al–C–Si steels with contents of carbon 0.2–1.6 wt.%, manganese 1–35 wt.%, aluminum 1–10 wt.%, and silicon 0.5–4 wt.%. Based on these calculations, temperature-dependent and composition-dependent diagrams were developed in the mentioned composition range. Also, the effect of the austenite grain size (from 1 to 300 μm) on SFEs was analyzed. Furthermore, some results of SFE obtained with this model were compared with the experimental results reported in the literature. In summary, the present model introduces new changes that shows a better correlation with the experimental results and also allows to expand the ranges of temperatures, compositions, grain sizes, and also the SFE maps available in the literature to support the design of Fe–Mn–Al–C–Si steels as a function of the SFE.

2020 ◽  
Vol 12 (02) ◽  
pp. 2050022
Author(s):  
Niandong Xu ◽  
Weiguo Li ◽  
Jianzuo Ma ◽  
Yong Deng ◽  
Haibo Kou ◽  
...  

In this study, a theoretical model is developed to characterize the quantitative effect of temperature on the hardness of pure FCC and HCP metals. The model is verified by comparison with the available experimental results of Cu, Al, Zn, Mg, Be, Zr, Ni, Ir, Rh, and Ti at different temperatures. Compared with the widely quoted Westbrook model and Ito–Shishokin model which need piecewise fitting to describe experimental values, the present model merely needs two hardness values at different temperatures to predict the experimental results, reducing reliance on conducting lots of experiments. This work provides a convenient method to predict temperature-dependent hardness of pure metals, and it is worth noting that it can be applied to a wide temperature range from absolute zero to melting point.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ehab A. El-Danaf ◽  
Mahmoud S. Soliman ◽  
Ayman A. Al-Mutlaq

The effect of grain size and stacking fault energy (SFE) on the strain hardening rate behavior under plane strain compression (PSC) is investigated for pure Cu and binary Cu-Al alloys containing 1, 2, 4.7, and 7 wt. % Al. The alloys studied have a wide range of SFE from a low SFE of 4.5 mJm−2for Cu-7Al to a medium SFE of 78 mJm−2for pure Cu. A series of PSC tests have been conducted on these alloys for three average grain sizes of ~15, 70, and 250 μm. Strain hardening rate curves were obtained and a criterion relating twinning stress to grain size is established. It is concluded that the stress required for twinning initiation decreases with increasing grain size. Low values of SFE have an indirect influence on twinning stress by increasing the strain hardening rate which is reflected in building up the critical dislocation density needed to initiate mechanical twinning. A study on the effect of grain size on the intensity of the brass texture component for the low SFE alloys has revealed the reduction of the orientation density of that component with increasing grain size.


2019 ◽  
Vol 34 (13) ◽  
pp. 2398-2405
Author(s):  
Yusheng Li ◽  
Liangjuan Dai ◽  
Yang Cao ◽  
Yonghao Zhao ◽  
Yuntian Zhu

Abstract


2009 ◽  
Vol 15 (S2) ◽  
pp. 1070-1071
Author(s):  
JE Wittig ◽  
JA Jiménez ◽  
G Frommeyer

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 577 ◽  
Author(s):  
Sebastian Härtel ◽  
Birgit Awiszus ◽  
Marcel Graf ◽  
Alexander Nitsche ◽  
Marcus Böhme ◽  
...  

This paper examines how the initial austenite grain size in quench and partitioning (Q-P) processes influences the final mechanical properties of Q-P steels. Differences in austenite grain size distribution may result, for example, from uneven heating rates of semi-finished products prior to a forging process. In order to quantify this influence, a carefully defined heat treatment of a cylindrical specimen made of the Q-P-capable 42SiCr steel was performed in a dilatometer. Different austenite grain sizes were adjusted by a pre-treatment before the actual Q-P process. The resulting mechanical properties were determined using the upsetting test and the corresponding microstructures were analyzed by scanning electron microscopy (SEM). These investigations show that a larger austenite grain size prior to Q-P processing leads to a slightly lower strength as well as to a coarser martensitic microstructure in the Q-P-treated material.


Sign in / Sign up

Export Citation Format

Share Document