Spherical Elastic–Plastic Contact Model for Power-Law Hardening Materials Under Combined Normal and Tangential Loads

2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Bin Zhao ◽  
Song Zhang ◽  
Leon M. Keer

The contact between a power-law hardening elastic–plastic sphere and a rigid flat under combined normal and tangential loads in full stick is studied in this work. The displacement-driven loading is used since the frictional contact problems under the displacement-driven loading are widespread in the fields of metal forming and orthogonal cutting. The loading process is as follows: First, a normal displacement-driven loading is imposed on the rigid flat and kept constant; then, an additional tangential displacement-driven loading is applied to the rigid flat. The elastic–plastic contact behavior in presliding is investigated with a proposed finite element (FE) model, including the tangential force, the von Mises stress, the normal force, the contact pressure, and the contact area. The effect of the strain-hardening exponent on contact behavior is considered. It is seen that the tangential force increases nonlinearly with the increase of the tangential displacement, exhibiting gradual stiffness reduction which implies that the junction becomes more plastic. The von Mises stresses moves along the direction of the tangential load, while the maximum stress moves to the contact surface from the below. The normal force diminishes as the tangential load increases, and more obviously for the lower hardening exponent cases. The contact pressure also decreases more significantly for the lower hardening exponent cases. In addition, smaller exponents result in a greater increase of the contact area. The empirical expressions of the tangential force and the contact area in the tangential loading process are also proposed by fitting to the FE results.

Author(s):  
Kunio Asai ◽  
Muzio M. Gola

In order to achieve more accurate friction damping of turbine blades equipped with shroud covers and under-platform dampers, it is necessary to clarify such friction behaviors as tangential contact stiffness, micro-slips, and dissipated energy, under periodically varied normal force instead of constant normal force. Although some analytical studies were reported on the contact mechanics under alternating normal force, only minimal research has been conducted on the experimental verification of such behaviors, as friction tests were commonly done under constant normal force. In this study, we developed an original two-directional friction test system that can apply any combination of alternating normal and tangential forces by changing the displacement-controlled loading direction. In this system, relative displacement and contact force were measured simultaneously by using a laser Doppler displacement sensor and force transducers of the strain gage type. By using our original test system, we examined the dissipated energy under constant normal force and periodically-varied normal force whose amplitude is the same as that of tangential force with no phase difference. We then obtained a new finding that dissipated energy depends on alternating normal force under the same mean normal force and alternating tangential force. More specifically, when the tangential force coefficient, defined as the ratio of the amplitude of alternating tangential force to mean normal force, is large enough to cause a macro-slip, dissipated energy under variable normal force is smaller than that under constant normal force. Conversely, when tangential force coefficient is small in the micro-slip region, dissipated energy under variable normal force is larger than that under constant normal force. This behavior was successfully reproduced by FE analysis based on a macro-slip model, where an array of macro-slip elements was used to describe micro-slip behavior. It was found that alternating normal force makes it easier to cause a micro-slip in a certain area of the contact surface under variable normal force, resulting in higher dissipated energy than at constant normal force when tangential force coefficient is small. In this study, basic friction data were also obtained regarding the tangential contact stiffness with variations in contact pressure, as well as the relation between a micro-slip and the tangential force coefficient. Tangential contact stiffness increases as contact pressure increases. In addition, tangential contact stiffness increases with the nominal contact area, but is not proportional to the area. The non-dimensional slip range (corresponding to the ratio of slip range to stick displacement) was confirmed as being described in a unified form against different contact area (6 and 18 mm2) and contact pressure ranging from 3 to 40 MPa.


2007 ◽  
Vol 129 (4) ◽  
pp. 772-782 ◽  
Author(s):  
Li Po Lin ◽  
Jen Fin Lin

The determination of the elastoplastic deformation regime arising at the microcontact of a deformable ellipsoid and a rigid smooth flat was the main purpose of this study. One-eighth of an ellipsoid and a flat plate were taken as the contact bodies in the finite element analysis, and a mesh scheme of multisize elements was applied. Two observed phenomena regarding the contact pressures and the equivalent von Mises stresses formed at the contact area are given in order to identify the inception of the fully plastic deformation regime of an ellipsoid with an ellipticity ke. If the ellipticity (k) of an elliptical contact area is defined as the length ratio of the minor axis to the major axis, it is asymptotic to the ke value when the interference is sufficiently increased, irrespective of the ke value. The dimensionless interference regime associated with the elastoplastic deformation regime is narrowed by increasing the ellipticity of the ellipsoid (ke). Significant differences in the microcontact parameters such as the contact pressure, the contact area, and the contact load were found to be a function of the interference and the ke parameter of an ellipsoid. The interferences corresponding to the inceptions of the elastoplastic and fully plastic deformation regimes are both increased if the ke value is lowered. The interference, the contact area, and the contact load predicted by the present model for the behavior demonstrated at the inception of the elastoplastic deformation regime are lower than those obtained from the Horng model (Horng, J. H., 1998, “An Elliptical Elastic-Plastic Asperity Microcontact Model for Rough Surfaces,” ASME J. Tribol., 120, pp. 82–88) and the Jeng-Wang model (Jeng, Y. R., and Wang, P. Y., 2003, “An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation,” ASME J. Tribol., 125, pp. 232–240). Big differences in the results of the average contact pressure, the contact area, and the contact load among the above microcontact models are discussed. The discrepancies are also explained from the developments of these models and boundary conditions set for the elastoplastic deformation regime.


Author(s):  
Aizhong Wu ◽  
Xi Shi ◽  
Andreas A. Polycarpou

In this work, by utilizing the shear strength criterion for the sliding inception, a finite element model for obliquely loaded spherical contact has been developed, which realized a friction transition from perfect slip case to full stick case with increasing normal approach. Both tangential force and normal force during tangential loading were investigated using different models. It was found that with elastic-plastic normal displacement preload, there is an obvious normal force release during tangential loading. Furthermore, both Coulomb friction model and the proposed model predict a lower tangential force at the same tangential displacement compared to the full stick model. However, the Coulomb friction is more empirically determined with some arbitrary friction coefficient whereas the proposed model is based on physics parameters.


2007 ◽  
Vol 23 (4) ◽  
pp. 341-352 ◽  
Author(s):  
J. L. Liou ◽  
J. F. Lin

ABSTRACTThe elastic-plastic microcontact model of a sphere in contact with a flat plate is developed in the present study to investigate the effect of surface roughness on the total contact area and contact load. From the study done by the finite element method, the dimensionless asperity contact area, average contact pressure, and contact load in the elastoplastic regime are assumed to be a power form as a function of dimensionless interference (δ/δec). The coefficients and exponents of the power form expressions can be determined by the boundary conditions set at the two ends of the elastoplastic deformation regime. The contact pressures evaluated by the present model are compared with those predicted by the Hertz theory, without considering the surface roughness and the reported model, including the roughness effect, but only manipulating in the elastic regime. The area of non-zero contact pressure is enlarged if the surface roughness is considered in the microcontact behavior. The maximum contact pressure is lowered by the presence of surface roughness if the contact load is fixed. Under a normal load, both the contact pressure and the contact area are elevated by raising the plasticity index for the surface of the same surface roughness.


2002 ◽  
Vol 69 (5) ◽  
pp. 657-662 ◽  
Author(s):  
L. Kogut ◽  
I. Etsion

An elastic-plastic finite element model for the frictionless contact of a deformable sphere pressed by a rigid flat is presented. The evolution of the elastic-plastic contact with increasing interference is analyzed revealing three distinct stages that range from fully elastic through elastic-plastic to fully plastic contact interface. The model provides dimensionless expressions for the contact load, contact area, and mean contact pressure, covering a large range of interference values from yielding inception to fully plastic regime of the spherical contact zone. Comparison with previous elastic-plastic models that were based on some arbitrary assumptions is made showing large differences.


Author(s):  
Yuri Kligerman ◽  
Izhak Etsion

The behavior of an elastic-plastic contact between a deformable sphere and a rigid flat under combined constant normal and reciprocating tangential loading is investigated in the present work. The theoretical model is based on the assumptions of full stick contact condition and two kinds of the sphere material hardening. Hysteretic change of friction force versus tangential displacement during reciprocating tangential loading is investigated along with the study of the change of the contact area and stress state in the elastic-plastic sphere. Good agreement between theoretical and experimental results is obtained.


Author(s):  
A. Sepehri ◽  
K. Farhang

A three dimensional model based on CEB elastic-plastic contact leads to the derivation of two force components due to the shoulder-shoulder interaction of the asperities. A normal force component is resulted that upon summation of all possible interactions, in a statistical sense, obtains the normal force between the two surfaces. A second component of asperity force would be along the tangential plane (mean plane). When there is not net applied tangential force the tangential component of force on an asperity due to all its interactions would vanish. Upon impending motion, however, the tangential force can no longer cancel since the existence of a net tangential applied load would disrupt the symmetry of loading in the tangential direction. A three dimensional elastic-plastic model then furnishes a half-plane tangential elastic-plastic force term that would exist when relative movement of one surface on another occurs along an arbitrary axis in the tangential plane. This paper addresses an account of friction due to the elastic-plastic interaction of two surfaces by recognizing that the tangential half-plane elasto-plastic force term is the resisting force when two surfaces in elastic-plastic contact are made to slide.


Author(s):  
Shaobiao Cai ◽  
Bharat Bhushan

A numerical three-dimensional contact model is presented to investigate the contact behavior of multilayered elastic-perfectly plastic solids with rough surfaces. The surface displacement and contact pressure distributions are obtained based on the variational principle with fast Fourier transform (FFT)-based scheme. Von Mises yield criterion is used to determine the onset of yield. The effective hardness is modeled and plays role when the local displacement meet the maximum displacement criterion. Simulations are performed to obtain the contact pressures, fractional total contact area, fractional plastic contact area, and surface/subsurface stresses. These contact statistics are analyzed to study the effects of the layer-to-substrate ratios of stiffness and hardness, surface roughness, and layers thickness of rough, two-layered elastic/plastic solids. The results yield insight into the effects of stiffness and hardness of layers and substrates, surface roughness, and applied load on the contact performance. The layer parameters leading to low friction, stiction, and wear are investigated and identified.


1982 ◽  
Vol 49 (2) ◽  
pp. 345-352 ◽  
Author(s):  
M. D. Bryant ◽  
L. M. Keer

Surface and subsurface stresses and displacements are obtained when two geometrically and elastically identical rough bodies are pressed together by normal and tangential loads. The theories of Cattaneo and Mindlin, who introduce zones of slip and stick within an elliptical contact area, are used. Von Mises yield criterion and maximum principle tensile stresses are used as failure criteria to assess potential failure due to shear or brittle fracture.


2020 ◽  
Vol 65 (3) ◽  
pp. 205
Author(s):  
I. A. Lyashenko ◽  
Z. M. Liashenko

The influence of a tangential displacement on the strength of the adhesive contacts between gradient materials with different gradings of their properties has been studied. Variants with a controlled force (fixed load) and a controlled displacement (fixed grips) are considered. A relationship between the normal and tangential critical force components at which the contact is destroyed is obtained. It is valid within the whole interval of the gradient parameters, where the detachment criterium is obeyed. The optimal parameters at which the adhesive contact strength is maximum are determined. A case of detachment under the action of only the tangential force, i.e. when the normal force equals zero, is analyzed separately.


Sign in / Sign up

Export Citation Format

Share Document