Nonlocal Analytical Solutions for Multilayered One-Dimensional Quasicrystal Nanoplates

2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Natalie Waksmanski ◽  
Ernian Pan

An exact closed-form solution for the three-dimensional static deformation and free vibrational response of a simply supported and multilayered quasicrystal (QC) nanoplate with the nonlocal effect is derived. Numerical examples are presented for a homogeneous crystal nanoplate, homogenous QC nanoplate, and sandwich nanoplates with various stacking sequences. Induced by traction boundary conditions, extended displacements and stresses reveal the important role that the nonlocal parameter plays in the structural analysis of nanoquasicrystals (nano-QCs). The natural frequencies and the corresponding mode shapes of the nanoplates further show the influence of stacking sequence and phonon–phason coupling effect. This exact solution is useful for it provides benchmark results to assess the accuracy of finite element nano-QC models and can assist engineers in tuning their quasicrystal nanoplate design.

2014 ◽  
Vol 136 (4) ◽  
Author(s):  
Natalie Waksmanski ◽  
Ernian Pan ◽  
Lian-Zhi Yang ◽  
Yang Gao

An exact closed-form solution of free vibration of a simply supported and multilayered one-dimensional (1D) quasi-crystal (QC) plate is derived using the pseudo-Stroh formulation and propagator matrix method. Natural frequencies and mode shapes are presented for a homogenous QC plate, a homogenous crystal plate, and two sandwich plates made of crystals and QCs. The natural frequencies and the corresponding mode shapes of the plates show the influence of stacking sequence on multilayered plates and the different roles phonon and phason modes play in dynamic analysis of QCs. This work could be employed to further expand the applications of QCs especially if used as composite materials.


1981 ◽  
Vol 103 (3) ◽  
pp. 591-595 ◽  
Author(s):  
J. Eftekhar ◽  
G. Darkazalli ◽  
A. Haji-Sheikh

A simplified analytical model for the computation of thermal conduction across rectangular-celled enclosures based on the assumption of quasi-one-dimensional conduction in the cell partitions is presented. The rectangular enclosures may contain solid or liquid for which the conduction is two or three-dimensional depending on the geometrical configuration. Additional assumptions concerning radiation interchange between participating surfaces are necessary when the enclosure contains a stagnant gas. This analytical model leads to a closed form solution for temperature distribution in the partitions and the multidimensional conductive region. A parametric study of heat flux is presented. The numerical data define a range of parameters for which a one-dimensional conduction model is satisfactory.


2000 ◽  
Vol 123 (2) ◽  
pp. 150-156 ◽  
Author(s):  
Lixin Zhang ◽  
Jean W. Zu ◽  
Zhichao Hou

A linear damped hybrid (continuous/discrete components) model is developed in this paper to characterize the dynamic behavior of serpentine belt drive systems. Both internal material damping and external tensioner arm damping are considered. The complex modal analysis method is developed to perform dynamic analysis of linear non-self-adjoint hybrid serpentine belt-drive systems. The adjoint eigenfunctions are acquired in terms of the mode shapes of an auxiliary hybrid system. The closed-form characteristic equation of eigenvalues and the exact closed-form solution for dynamic response of the non-self-adjoint hybrid model are obtained. Numerical simulations are performed to demonstrate the method of analysis. It is shown that there exists an optimum damping value for each vibration mode at which vibration decays the fastest.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Isaiah Ramos ◽  
Young Ho Park ◽  
Jordan Ulibarri-Sanchez

In this paper, we developed an exact analytical 3D elasticity solution to investigate mechanical behavior of a thick multilayered anisotropic fiber-reinforced pressure vessel subjected to multiple mechanical loadings. This closed-form solution was implemented in a computer program, and analytical results were compared to finite element analysis (FEA) calculations. In order to predict through-thickness stresses accurately, three-dimensional finite element meshes were used in the FEA since shell meshes can only be used to predict in-plane strength. Three-dimensional FEA results are in excellent agreement with the analytical results. Finally, using the proposed analytical approach, we evaluated structural damage and failure conditions of the composite pressure vessel using the Tsai–Wu failure criteria and predicted a maximum burst pressure.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
J. R. Zabadal ◽  
C. A. Poffal

Several analytical, numerical and hybrid methods are being used to solve diffusion and diffusion advection problems. In this work, a closed form solution of the three-dimensional diffusion advection equation in a Cartesian coordinate system is obtained by applying rules, based on the Lie symmetries, to manipulate the exponential of the differential operators that appear in its formal solution. There are many advantages of applying these rules: the increase in processing velocity so that the solution may be obtained in real time, the reduction in the amount of memory required to perform the necessary tasks in order to obtain the solution, since the analytical expressions can be easily manipulated in post-processing and also the discretization of the domain may not be necessary in some cases, avoiding the use of mean values for some parameters involved. These rules yield good results when applied to obtain solutions for problems in fluid mechanics and in quantum mechanics. In order to show the performance of the method, a one-dimensional scenario of the pollutant dispersion in a stable boundary layer is simulated, considering that the horizontal component of the velocity field is dominant and constant, disregarding the other components. The results are compared with data available in the literature.


1995 ◽  
Vol 80 (2) ◽  
pp. 424-426
Author(s):  
Frank O'Brien ◽  
Sherry E. Hammel ◽  
Chung T. Nguyen

The authors' Poisson probability method for detecting stochastic randomness in three-dimensional space involved the need to evaluate an integral for which no appropriate closed-form solution could be located in standard handbooks. This resulted in a formula specifically calculated to solve this integral in closed form. In this paper the calculation is verified by the method of mathematical induction.


2005 ◽  
Vol 4 (2) ◽  
pp. 197
Author(s):  
J. R. Zabadal ◽  
C. A. Poffal

Several analytical, numerical and hybrid methods are being used to solve diffusion and diffusion advection problems. In this work, a closed form solution of the three-dimensional diffusion advection equation in a Cartesian coordinate system is obtained by applying rules, based on the Lie symmetries, to manipulate the exponential of the differential operators that appear in its formal solution. There are many advantages of applying these rules: the increase in processing velocity so that the solution may be obtained in real time, the reduction in the amount of memory required to perform the necessary tasks in order to obtain the solution, since the analytical expressions can be easily manipulated in post-processing and also the discretization of the domain may not be necessary in some cases, avoiding the use of mean values for some parameters involved. These rules yield good results when applied to obtain solutions for problems in fluid mechanics and in quantum mechanics. In order to show the performance of the method, a one-dimensional scenario of the pollutant dispersion in a stable boundary layer is simulated, considering that the horizontal component of the velocity field is dominant and constant, disregarding the other components. The results are compared with data available in the literature.


2019 ◽  
Vol 484 (6) ◽  
pp. 672-677
Author(s):  
A. V. Vokhmintcev ◽  
A. V. Melnikov ◽  
K. V. Mironov ◽  
V. V. Burlutskiy

A closed-form solution is proposed for the problem of minimizing a functional consisting of two terms measuring mean-square distances for visually associated characteristic points on an image and meansquare distances for point clouds in terms of a point-to-plane metric. An accurate method for reconstructing three-dimensional dynamic environment is presented, and the properties of closed-form solutions are described. The proposed approach improves the accuracy and convergence of reconstruction methods for complex and large-scale scenes.


2010 ◽  
Vol 54 (01) ◽  
pp. 15-33
Author(s):  
Jong-Shyong Wu ◽  
Chin-Tzu Chen

Under the specified assumptions for the equation of motion, the closed-form solution for the natural frequencies and associated mode shapes of an immersed "Euler-Bernoulli" beam carrying an eccentric tip mass possessing rotary inertia has been reported in the existing literature. However, this is not true for the immersed "Timoshenko" beam, particularly for the case with effect of axial load considered. Furthermore, the information concerning the forced vibration analysis of the foregoing Timoshenko beam caused by wave excitations is also rare. Therefore, the first purpose of this paper is to present a technique to obtain the closed-form solution for the natural frequencies and associated mode shapes of an axial-loaded immersed "Timoshenko" beam carrying eccentric tip mass with rotary inertia by using the continuous-mass model. The second purpose is to determine the forced vibration responses of the latter resulting from excitations of regular waves by using the mode superposition method incorporated with the last closed-form solution for the natural frequencies and associated mode shapes of the beam. Because the determination of normal mode shapes of the axial-loaded immersed "Timoshenko" beam is one of the main tasks for achieving the second purpose and the existing literature concerned is scarce, the details about the derivation of orthogonality conditions are also presented. Good agreements between the results obtained from the presented technique and those obtained from the existing literature or conventional finite element method (FEM) confirm the reliability of the presented theories and the developed computer programs for this paper.


Sign in / Sign up

Export Citation Format

Share Document