Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage

2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Kelsey L. Kleinhans ◽  
Alicia R. Jackson

A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

Nanoscale ◽  
2021 ◽  
Author(s):  
Lixiang Xing ◽  
Cui Wang ◽  
Yi Cao ◽  
Jihui Zhang ◽  
Haibing Xia

In this work, macroscopical monolayer films of ordered arrays of gold nanoparticles (MMF-OA-Au NPs) are successfully prepared at the interfaces of toluene-diethylene glycol (DEG) with a water volume fraction of...


2020 ◽  
Vol 87 (9) ◽  
pp. S149-S150
Author(s):  
Yu Sui ◽  
Hilary Bertisch ◽  
Donald Goff ◽  
Alexey Samsonov ◽  
Mariana Lazar

2018 ◽  
Vol 18 (16) ◽  
pp. 6822-6835 ◽  
Author(s):  
Francisco R. Moreira da Mota ◽  
Daniel J. Pagano ◽  
Marina Enricone Stasiak

2013 ◽  
Vol 712-715 ◽  
pp. 873-876
Author(s):  
Peng Du ◽  
Xiao Ling Liu ◽  
Xiao Ying Li

The swelling-shrinking soil embodies the features of expanding when absorbing water and shrinking when drying out; its engineering properties are sensitive to water fluctuation. Mainstream test instruments of SWCC cannot accurately get its relationship between matric suction and water volume fraction. So a correction method based on the results of shrinkage test is carried out. The method is accomplished by using the volume deformation which is obtained in shrinkage test to calculate its real water volume fraction and then combining the results of SWCC test and finally constructing the relationship between matric suction and water volume fraction. Through real application, this method is proved to be feasible and essential.


2014 ◽  
Vol 1081 ◽  
pp. 93-97
Author(s):  
Qing Li ◽  
Jia Qing Chen ◽  
Kui Sheng Wang

Numerical simulation has been carried out to investigate water separation from emulsion with new equipment designed by ourselves. Three rotate speed of 300r/min,1500r/min,3000r/min have been calculated using Reynolds stress model ,which is at the same water volume fraction, droplet diameter and other physical parameters .When the rotate speed increase, the velocity and pressure drop of fluid tends to increase. Due to the effect of centrifugal field, the water volume fraction of near the wall is larger than that of inner fluid. Because of the gravity, the water volume fraction of bottom is larger than that of upper.


2020 ◽  
Vol 330 ◽  
pp. 01033
Author(s):  
Nihel Grich ◽  
Walid Foudhil ◽  
Souad Harmand ◽  
Sadok Ben Jabrallah

Water spraying in exchanger systems is widely used to allow cooling and improving their performance. However, transfers within the spray mixture are difficult to express because the combined mass and heat are transferred between phases, which complicates the design of the spray systems. This article presents a numerical study of the influence of water volume fraction on the distribution of the temperature in a canal. A 2D numerical model of a horizontal channel was generated and the equations governing the continuous phases (air) and the dispersed phase (water) were developed. These equations were solved using Comsol multiphysics. A comparison of the simulation results and those of the experiment reveals an acceptable concordance.


Sign in / Sign up

Export Citation Format

Share Document