scholarly journals Test Method Development and Determination of Three-Dimensional Strength and Failure Modes of Polyvinyl Chloride Structural Foams

Author(s):  
Akira Miyase ◽  
Su Su Wang

A comprehensive study has been conducted to develop proper test methods for accurate determination of failure strengths along different material directions of closed-cell polymer-based structural foams under different loading modes. The test methods developed are used to evaluate strengths and failure modes of commonly used H80 polyvinyl chloride (PVC) foam. The foam's out-of-plane anisotropic and in-plane isotropic cell microstructures are considered in the test methodology development. The effect of test specimen geometry on compressive deformation and failure properties is addressed, especially the aspect ratio of the specimen gauge section. Foam nonlinear constitutive relationships, strength and failure modes along both in-plane and out-of-plane (rise) directions are obtained in different loading modes. Experimental results reveal strong transversely isotropic characteristics of foam microstructure and strength properties. Compressive damage initiation and progression prior to failure are investigated in an incremental loading–unloading experiment. To evaluate foam in-plane and out-of-plane shear strengths, a scaled shear test method is also developed. Shear loading and unloading experiments are carried out to identify the causes of observed large shear damage and failure modes. The complex damage and failure modes in H80 PVC foam under different loading modes are examined, both macroscopically and microscopically.

2005 ◽  
Vol 127 (4) ◽  
pp. 483-495 ◽  
Author(s):  
Ahmad Abu Obaid ◽  
Jay G. Sloan ◽  
Mark A. Lamontia ◽  
Antonio Paesano ◽  
Subhotosh Khan ◽  
...  

The objective of this study is to describe and evaluate test methods developed to experimentally characterize the in situ mechanical behavior of solder ball arrays connecting printed wiring boards to area array packages under tensile, compressive, and shear loading at −40, 23, and 125 °C. The solder ball arrays tested were composed of 62%Sn–36%Pb–2%Ag solder alloy. Finite element modeling was performed. The results indicated that the test fixture should be geometrically equivalent to the projected shape of the ball grid array to achieve uniform loading. Tension, compression, and shear tests were conducted. For tensile loading the interfaces and the solder balls are loaded in series resulting in a large apparent strain (13%). Various interfacial failure modes are observed. Under compression and shear loading the effect of the interfaces are negligible and therefore a significant deformation and a remarkable yielding behavior of solder ball arrays can be observed. Furthermore, the specimens tested under shear loading showed different failure modes such as cohesive or adhesive failure modes depending on the test temperature. From the overall results, it has been determined that shear loading is the most representative test to measure the actual mechanical behavior of solder in ball grid arrays.


2020 ◽  
pp. 073168442095810
Author(s):  
Sang Yoon Park ◽  
Won Jong Choi

This paper presents a review of recent literature related to the static mechanical testing of thermoset-based carbon fiber reinforced composites and introduces a material qualification methodology to generate statistically-based allowable design values for aerospace application. Although most test methods have been found to be effective in determining the specific material properties by incorporating them into the material qualification and quality control provisions, a full validation to clarify the behavior of thermoset-based laminated composite materials is currently lacking, particularly with regard to the characterization of compressive, in-plane, interlaminar shear, and damage tolerance properties. The present study obtains information on the different types of test method that can be employed within the same material properties, and makes an in-depth experimental comparison based on the past literatures. A discussion on the scope of theoretical analysis involves a description of how the proposed test method can be adequate for obtaining more accurate material properties. This discussion is directly applicable to the assessment of material nonlinearity and the geometrical effect of specimens. Finally, the resulting failure modes and the effect of each material property are studied to aid the understanding of the load distribution and behavior of laminated composite materials.


2014 ◽  
Vol 137 (1) ◽  
Author(s):  
Matthew Ernst ◽  
Ed Habtour ◽  
Abhijit Dasgupta ◽  
Michael Pohland ◽  
Mark Robeson ◽  
...  

Multiaxial and uniaxial vibration experiments were conducted in order to study the differences in failure modes and fatigue life for the two types of excitation. An electrodynamic (ED) shaker capable of controlled vibration in six degrees of freedom (DOF) was employed for the experiments. The test specimen consisted of six large inductors insertion mounted on a printed wiring board (PWB). Average damage accumulation rate (DAR) in the inductor leads was measured for random excitations in-plane, out-of-plane, and both directions simultaneously. Under simultaneous multiaxial excitation, the average DAR was found to be 2.2 times greater than the sum of the in-plane and out-of-plane DARs. The conclusion was that multiple-step sequential uniaxial testing may significantly overestimate the durability of large/heavy structures with high center of mass in a multiaxial dynamic environment. Additionally, a test method utilizing uniaxial vibration along a direction other than the principal directions of the structure was examined. This method was found to have significant limitations, but showed better agreement with simultaneous multiaxial vibration experiments.


2014 ◽  
Vol 587-589 ◽  
pp. 947-951
Author(s):  
Jun Yong Liu ◽  
Liu Jun Zhang

The test methods provided by current related "specifications" do not apply to saline soil soft foundation bearing capacity test. Through discussing the limitations of the related specifications and based on the experience on saline soil soft ground capacity test, the paper made some improvements of test on such aspects: conditions of loading and stopping load, determination of the characteristic value of the ground bearing capacity and evaluation, the paper also put forward the saline soil soft ground capacity test method.


Author(s):  
A. S. Alekseeva ◽  
T. B. Shemeryankina ◽  
M. N. Lyakina ◽  
M. S. Smirnova ◽  
E. P. Fedorova ◽  
...  

Vitamin A is present in multivitamin products mainly in the form of retinol esters: retinyl acetate, retinyl palmitate, and beta carotene—retinol precursor (dimer) found in plants, which is capable of converting into retinol in liver cells. Retinol is determined in medicinal products primarily by high performance liquid chromatography (HPLC), with preliminary purification and vitamin isolation by liquid-liquid extraction. However, scientific literature also describes other methods of sample preparation and analysis of such compounds. An important issue is differentiation of vitamin A from other fat-soluble vitamins often included as components in multivitamin products. The aim of the study was to analyse and summarise data on current methods used for determination of vitamin A and its derivatives in medicinal products. The authors analysed the range of vitamin A products authorised in the Russian Federation, and the test methods described in their product specification files. The study demonstrated that the test method most often used for determination of retinol esters was HPLC with isocratic elution mode using octadecylsilyl packing in the reverse-phase mode, and, less frequently, aminopropylsilyl packing in the normal phase mode. Determination of beta carotene in medicinal products is most often performed using spectrophotometry. 


2019 ◽  
Vol 85 (7) ◽  
pp. 41-49
Author(s):  
Yaroslava V. Sulimina ◽  
Nikolay O. Yakovlev ◽  
Vladimir S. Erasov ◽  
Aleksey Yu. Ampilogov ◽  
Andrey N. Polyakov ◽  
...  

The special features of various bearing deformation measurements for pin-type bearing tests of metallic materials are considered along with their impact on the magnitude of the «bearing elastic modulus» and bearing stress. These bearing test methods are present in ASTM and various institutional standards, though no state standard (GOST, GOST R) is currently available for bearing test method of metallic materials. Analysis of additional deformations which arise in determining the degree of hole bearing deformation is carried out. A set of sources of additional deformations is shown to be characteristic for each test procedure and is attributed to the design features of the device, the site and a way of mounting the extensometer. Additional deformations can be both tensile and compressive. It is shown that the impact of additional deformations on the «bearing elastic modulus» is limited to 14% for different procedures. No difference between the methods is revealed with regard to determination of the strength characteristics. At the same time the dispersion decreases with increase in plastic deformation and for bearing deformation about 4% the variation coefficient for all methods is no more than 1%. Advantages and shortcomings of the bearing test methods which affect the reproducibility of the results are considered. The effect of the specimen geometry on the bearing characteristics is considered. It is shown that increase both in the distance from the edge of the bearing specimen to the center of the hole for 1163T, VT6ch, 30KhGSA alloys and residual bearing deformation up to 6%, increase bearing strength characteristics.


Sign in / Sign up

Export Citation Format

Share Document