Analysis of Entropy Generation Due to Micropolar Fluid Flow in a Rectangular Duct Subjected to Slip and Convective Boundary Conditions

2017 ◽  
Vol 139 (7) ◽  
Author(s):  
D. Srinivasacharya ◽  
K. Himabindu

The entropy generation due to steady, incompressible micropolar fluid flow in a rectangular duct with slip and convective boundary conditions (CBCs) is calculated. An external uniform magnetic field is applied which is directed arbitrarily in a plane perpendicular to the flow direction. The governing partial differential equations of momentum, angular momentum, and energy are solved numerically using finite-difference method. The obtained velocity, microrotation, and temperature distributions are then used to evaluate the entropy generation and Bejan number. The effects of various parameters on the entropy generation and Bejan number are discussed through graphs.

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 102 ◽  
Author(s):  
Arshad Riaz ◽  
Muhammad Mubashir Bhatti ◽  
Rahmat Ellahi ◽  
Ahmed Zeeshan ◽  
Sadiq M. Sait

In this article, we discuss the entropy generation on the asymmetric peristaltic propulsion of non-Newtonian fluid with convective boundary conditions. The Williamson fluid model is considered for the analysis of flow properties. The current fluid model has the ability to reveal Newtonian and non-Newtonian behavior. The present model is formulated via momentum, entropy, and energy equations, under the approximation of small Reynolds number and long wavelength of the peristaltic wave. A regular perturbation scheme is employed to obtain the series solutions up to third-order approximation. All the leading parameters are discussed with the help of graphs for entropy and temperature profiles. The irreversibility process is also discussed with the help of Bejan number. Streamlines are plotted to examine the trapping phenomena. Results obtained provide an excellent benchmark for further study on the entropy production with mass transfer and peristaltic pumping mechanism.


Author(s):  
D. Srinivasacharya ◽  
K. Himabindu

AbstractThis article presents the effect of convective heating and velocity slip on flow generation of an incompressible micropolar fluid through a porous channel. The flow is induced by a constant axial pressure gradient applied in the flow direction. The non-linear governing equations are linearized using the quasilinearization technique and then solved by Chebyshev spectral collocation method. The numerical values of the velocity, microrotation and temperature are used to derive the corresponding entropy generation number and Bejan number within the porous channel. The influences of pertinent parameters on velocity, microrotation, temperature, entropy generation and Bejan number are discussed through graphs. It is observed that the convective heating tends to increase the entropy generation within the channel.


Author(s):  
BJ Gireesha ◽  
CT Srinivasa ◽  
NS Shashikumar ◽  
Madhu Macha ◽  
JK Singh ◽  
...  

The combined effects of the magnetic field, suction/injection, and convective boundary condition on heat transfer and entropy generation in an electrically conducting Casson fluid flow through an inclined porous microchannel are scrutinized. The temperature-dependent heat source is also accounted. Numerical simulation for the modelled problem is presented via Runge–Kutta–Felhberg-based shooting technique. Special attention is given to analyze the impact of involved parameters on the profiles of velocity [Formula: see text], temperature [Formula: see text], entropy generation [Formula: see text], and Bejan number [Formula: see text]. It is established that entropy generation rate decreases at the walls with an increase in Hartmann number [Formula: see text], while it increases at the center region of the microchannel.


Sign in / Sign up

Export Citation Format

Share Document