Entropy generation and heat transport analysis of Casson fluid flow with viscous and Joule heating in an inclined porous microchannel

Author(s):  
BJ Gireesha ◽  
CT Srinivasa ◽  
NS Shashikumar ◽  
Madhu Macha ◽  
JK Singh ◽  
...  

The combined effects of the magnetic field, suction/injection, and convective boundary condition on heat transfer and entropy generation in an electrically conducting Casson fluid flow through an inclined porous microchannel are scrutinized. The temperature-dependent heat source is also accounted. Numerical simulation for the modelled problem is presented via Runge–Kutta–Felhberg-based shooting technique. Special attention is given to analyze the impact of involved parameters on the profiles of velocity [Formula: see text], temperature [Formula: see text], entropy generation [Formula: see text], and Bejan number [Formula: see text]. It is established that entropy generation rate decreases at the walls with an increase in Hartmann number [Formula: see text], while it increases at the center region of the microchannel.

2018 ◽  
Vol 16 ◽  
pp. 120-139 ◽  
Author(s):  
N.S. Shashikumar ◽  
B.C. Prasannakumara ◽  
Bijjanal Jayanna Gireesha ◽  
Oluwole Daniel Makinde

The heat transfer and entropy generation in a MHD flow of Casson fluid through a porous microchannel with thermal radiation were investigated numerically. Combined effects of suction/injection, hydrodynamic slip, magnetic field and convective boundary condition on the heat transfer and entropy generation are studied. The dimensionless equations are solved numerically by using fourth-fifth-order Runge–Kutta integration method along with shooting technique. Moreover, influences of pertinent parameters on velocity, temperature and entropy generation were discussed in detail and illustrated graphically. Based on numerical results, we can see that, entropy generation rate increases with an increase in radiation parameter and Biot number. As Hartmann number increases, the entropy generation decreases at the both cooled and heated plates and increases at the centerline region of the microchannel.


Author(s):  
M. Venkateswarlu ◽  
P. Bhaskar

The analysis of MHD flow has been a concern of consideration for research scientists and engineers. In this treatise, the steady MHD flow of an incompressible and electrically conducting Casson fluid in a micro-channel with heat generation and viscous dissipation, in the presence of hydrodynamic slip and convective boundary conditions, is examined. Exact solutions of non-dimensional steady governing equations are obtained in closed form. Transient fluid velocity, temperature, entropy generation, and Bejan number are depicted by the line graphs whereas rate of heat transfer and skin-friction coefficient are computed in tabular form for pertinent flow parameters. It is established that the entropy generation rate and Bejan number increases for increasing values of the Casson parameter and heat generation parameter. In particular, the Casson parameter accelerates the skin-friction coefficient while it provides resistance to the rate of heat transfer near the channel walls. Casson fluid finds significant applications in biomechanics, polymer processing industries, and food processing.


Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 495 ◽  
Author(s):  
Nargis Khan ◽  
Iram Riaz ◽  
Muhammad Sadiq Hashmi ◽  
Saed A. Musmar ◽  
Sami Ullah Khan ◽  
...  

The appropriate utilization of entropy generation may provoke dipping losses in the available energy of nanofluid flow. The effects of chemical entropy generation in axisymmetric flow of Casson nanofluid between radiative stretching disks in the presence of thermal radiation, chemical reaction, and heat absorption/generation features have been mathematically modeled and simulated via interaction of slip boundary conditions. Shooting method has been employed to numerically solve dimensionless form of the governing equations, including expressions referring to entropy generation. The impacts of the physical parameters on fluid velocity components, temperature and concentration profiles, and entropy generation number are presented. Simulation results revealed that axial component of velocity decreases with variation of Casson fluid parameter. A declining variation in Bejan number was noticed with increment of Casson fluid constant. Moreover, a progressive variation in Bejan number resulted due to the impact of Prandtl number and stretching ratio constant.


Author(s):  
NS Shashikumar ◽  
K. Thriveni ◽  
Macha Madhu ◽  
B. Mahanthesh ◽  
BJ Gireesha ◽  
...  

The main theme of the current work is to investigate the flow and heat transport characteristics of non-Newtonian Williamson fluid in an inclined micro-channel along with entropy generation analysis. The significance of the thermal radiation, convective boundary condition, and multiple slip effects is explored. The entropy generation of the system has been analyzed by adopting the 2nd law of thermodynamics. The rheological expressions of the Williamson fluid model are also taken into account. The nonlinear system is tackled by using the finite element method. An appropriate comparison has been made with previously published results in the literature as a limiting case of the considered problem. The comparison confirmed an excellent agreement. Detailed discussion of the significance of effective parameters on Bejan number, entropy generation rate, temperature and velocity is presented through graphs. The numerical results portray that the entropy generation and Bejan number have escalating behavior to the higher value of angle of inclination. Furthermore, the Bejan number changing its behavior at two points for different values of Reynolds’ number.


Author(s):  
Kgomotshwana Frans Thosago ◽  
Lazarus Rundora ◽  
Samuel Olumide Adesanya

This article aims to computationally study entropy generation in a magnetohydrodynamic (MHD) third grade fluid flow in a horizontal channel with impermeable walls. The fluids viscosity and thermal conductivity are assumed to be dependent on temperature. The flow is driven by an applied uniform axial pressure gradient between infinite parallel plates and is considered to be incompressible, steady and fully developed. Adomian decomposition method (ADM) is used to obtain series solutions of the nonlinear governing equations. Thermodynamic analysis is done by computing the entropy generation rate and the irreversibility ratio (Bejan number). The effects of the various pertinent embedded parameters on the velocity field, temperature field, entropy generation rate and Bejan number are analysed through vivid graphical manipulations. The analysis shows that an appropriate combination of thermophysical parameters efficiently achieves entropy generation minimization in the thermomechanical system. The analysis shows that entropy generation minimization is achieved by increasing the magnetic field and the third grade material parameters, and therefore designs and processes incorporating MHD third grade fluid flow systems are far more likely to give optimum and efficient performance.


Author(s):  
Muhammad Ijaz Khan ◽  
Sohail Ahmad Khan ◽  
Tasawar Hayat ◽  
Muhammad Faisal Javed ◽  
Ahmed Alsaedi

Purpose This study aims to examine the flow characteristics of Ree–Eyring fluid between two rotating disks. The characteristics of heat transfer are discussed in presence of viscous dissipation, heat source/sink and nonlinear radiative heat flux. Design/methodology/approach Nonlinear flow expressions lead to ordinary ones through adequate similarity transformations. The ordinary differential system has been tackled through optimal homotopic method. The impact of different flow variables on the velocity field, entropy generation rate and temperature fields is graphically discussed. The surface drag force and heat transfer rate are numerically examined via various pertinent parameters. Findings By minimization of values of stretching parameter and Brinkman number, the entropy generation rate can be controlled. The entropy generation rate enhances for higher values of magnetic parameter, while the Bejan number is decreased via magnetic parameter. Originality/value No such work is yet published in the literature.


2018 ◽  
Vol 8 (12) ◽  
pp. 2588 ◽  
Author(s):  
Sayer Alharbi ◽  
Abdullah Dawar ◽  
Zahir Shah ◽  
Waris Khan ◽  
Muhammad Idrees ◽  
...  

In this article, we have briefly examined the entropy generation in magnetohydrodynamic (MHD) Eyring–Powell fluid over an unsteady oscillating porous stretching sheet. The impact of thermal radiation and heat source/sink are taken in this investigation. The impact of embedded parameters on velocity function, temperature function, entropy generation rate, and Bejan number are deliberated through graphs, and discussed as well. By studying the entropy generation in magnetohydrodynamic Eyring–Powell fluid over an unsteady oscillating porous stretching sheet, the entropy generation rate is reduced with escalation in porosity, thermal radiation, and magnetic parameters, while increased with the escalation in Reynolds number. Also, the Bejan number is increased with the escalation in porosity and magnetic parameter, while increased with the escalation in thermal radiation parameter. The impact of skin fraction coefficient and local Nusselt number are discussed through tables. The partial differential equations are converted to ordinary differential equation with the help of similarity variables. The homotopy analysis method (HAM) is used for the solution of the problem. The results of this investigation agree, satisfactorily, with past studies.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Poom Kumam ◽  
Zahir Shah ◽  
Abdullah Dawar ◽  
Haroon Ur Rasheed ◽  
Saeed Islam

We presented the applications of entropy generation for SWCNTs and MWCNTs based on kerosene oil for Casson nanofluid flow by rotating channels. Kerosene oil has advanced thermal conductivity and exclusive features and has a lot of practical uses due to its unique behavior. That is why we have used kerosene oil as a based fluid. For the entropy generation second law of thermodynamics is applied and implemented for the nanofluid transport mechanism. In the presence of magnetic field, the effects of thermal radiations and heat source/sink on the temperature profiles are studied. The fluid flow is supposed in steady state. With the help of suitable similitude parameters, the leading equations have been transformed to a set of differential equations. The solution of the modeled problem has been carried out with the homotopic approach. The physical properties of carbon nanotubes are shown through tables. The effects of the imbedded physical parameters on the velocities, temperature, entropy generation rate, and Bejan number profiles are investigated and presented through graphs. Moreover, the impact of significant parameters on surface drag force and heat transfer rate is tabulated.


Sign in / Sign up

Export Citation Format

Share Document