scholarly journals Variable Thumb Moment Arm Modeling and Thumb-Tip Force Production of a Human-Like Robotic Hand

2017 ◽  
Vol 139 (10) ◽  
Author(s):  
Taylor D. Niehues ◽  
Ashish D. Deshpande

The anatomically correct testbed (ACT) hand mechanically simulates the musculoskeletal structure of the fingers and thumb of the human hand. In this work, we analyze the muscle moment arms (MAs) and thumb-tip force vectors in the ACT thumb in order to compare the ACT thumb's mechanical structure to the human thumb. Motion data are used to determine joint angle-dependent MA models, and thumb-tip three-dimensional (3D) force vectors are experimentally analyzed when forces are applied to individual muscles. Results are presented for both a nominal ACT thumb model designed to match human MAs and an adjusted model that more closely replicates human-like thumb-tip forces. The results confirm that the ACT thumb is capable of faithfully representing human musculoskeletal structure and muscle functionality. Using the ACT hand as a physical simulation platform allows us to gain a better understanding of the underlying biomechanical and neuromuscular properties of the human hand to ultimately inform the design and control of robotic and prosthetic hands.

2016 ◽  
Vol 45 (3) ◽  
pp. 789-798 ◽  
Author(s):  
Alessandro Navacchia ◽  
Vasiliki Kefala ◽  
Kevin B. Shelburne

2001 ◽  
Vol 204 (21) ◽  
pp. 3621-3627 ◽  
Author(s):  
Anthony Herrel ◽  
Jay J. Meyers ◽  
Peter Aerts ◽  
Kiisa C. Nishikawa

SUMMARYChameleons capture prey items using a ballistic tongue projection mechanism that is unique among lizards. During prey capture, the tongue can be projected up to two full body lengths and may extend up to 600 % of its resting length. Being ambush predators, chameleons eat infrequently and take relatively large prey. The extreme tongue elongation (sixfold) and the need to be able to retract fairly heavy prey at any given distance from the mouth are likely to place constraints on the tongue retractor muscles. The data examined here show that in vivo retractor force production is almost constant for a wide range of projection distances. An examination of muscle physiology and of the ultrastructure of the tongue retractor muscle shows that this is the result (i) of active hyoid retraction, (ii) of large muscle filament overlap at maximal tongue extension and (iii) of the supercontractile properties of the tongue retractor muscles. We suggest that the chameleon tongue retractor muscles may have evolved supercontractile properties to enable a substantial force to be produced over a wide range of tongue projection distances. This enables chameleons successfully to retract even large prey from a variety of distances in their complex three-dimensional habitat.


Author(s):  
Abhay Patil

Abstract: There are roughly 21 million handicapped people in India, which is comparable to 2.2% of the complete populace. These people are affected by various neuromuscular problems. To empower them to articulate their thoughts, one can supply them with elective and augmentative correspondence. For this, a Brain-Computer Interface framework (BCI) has been assembled to manage this specific need. The basic assumption of the venture reports the plan, working just as a testing impersonation of a man's arm which is intended to be powerfully just as kinematically exact. The conveyed gadget attempts to take after the movement of the human hand by investigating the signs delivered by cerebrum waves. The cerebrum waves are really detected by sensors in the Neurosky headset and produce alpha, beta, and gamma signals. Then, at that point, this sign is examined by the microcontroller and is then acquired onto the engineered hand by means of servo engines. A patient that experiences an amputee underneath the elbow can acquire from this specific biomechanical arm. Keywords: Brainwaves, Brain Computer Interface, Arduino, EEG sensor, Neurosky Mindwave Headset, Robotic arm


1997 ◽  
Vol 40 (5) ◽  
pp. 1118-1121 ◽  
Author(s):  
Thierry Guiard-Marigny ◽  
David J. Ostry

With the development of precise three-dimensional motion measurement systems and powerful computers for three-dimensional graphical visualization, it is possible to record and fully reconstruct human jaw motion. In this paper, we describe a visualization system for displaying three-dimensional jaw movements in speech. The system is designed to take as input jaw motion data obtained from one or multi-dimensional recording systems. In the present application, kinematic records of jaw motion were recorded using an optoelectronic measurement system (Optotrak). The corresponding speech signal was recorded using an analog input channel. The three orientation angles and three positions that describe the motion of the jaw as a rigid skeletal structure were derived from the empirical measurements. These six kinematic variables, which in mechanical terms account fully for jaw motion kinematics, act as inputs that drive a real-time three-dimensional animation of a skeletal jaw and upper skull. The visualization software enables the user to view jaw motion from any orientation and to change the viewpoint during the course of an utterance. Selected portions of an utterance may be replayed and the speed of the visual display may be varied. The user may also display, along with the audio track, individual kinematic degrees of freedom or several degrees of freedom in combination. The system is presently being used as an educational tool and for research into audio-visual speech recognition. Interested researchers may obtain the software and source code free of charge from the authors.


2018 ◽  
Vol 08 (01) ◽  
pp. 010-017
Author(s):  
Emily Lalone ◽  
Masao Nishiwaki ◽  
Ryan Willing ◽  
James Johnson ◽  
Graham King ◽  
...  

Background The effects of dorsal angulation deformity on in vitro distal radioulnar joint (DRUJ) contact patterns are not well understood. Purpose The purpose of this study was to utilize intercartilage distance to examine the effects of forearm rotation angle, distal radius deformity, and triangular fibrocartilage complex (TFCC) sectioning on DRUJ contact area and centroid position. Methods An adjustable implant permitted the creation of simulated intact state and dorsal angulation deformities of 10, 20, and 30 degrees. Three-dimensional cartilage models of the distal radius and ulna were created using computed tomography data. Using optically tracked motion data, the relative position of the cartilage models was rendered and used to measure DRUJ cartilage contact mechanics. Results DRUJ contact area was highest between 10 and 30 degrees of supination. TFCC sectioning caused a significant decrease in contact area with a mean reduction of 11 ± 7 mm2 between the TFCC intact and sectioned conditions across all variables. The position of the contact centroid moved volarly and proximally with supination for all variables. Deformity had a significant effect on the location of the contact centroid along the volar–dorsal plane. Conclusion Contact area in the DRUJ was maximal between 10 and 30 degrees of supination during the conditions tested. There was a significant effect of simulated TFCC rupture on contact area in the DRUJ, with a mean contact reduction of 11 ± 7 mm2 after sectioning. Increasing dorsal angulation caused the contact centroid to move progressively more volar in the sigmoid notch.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 335
Author(s):  
Venkata Snehith.H ◽  
Likita Ratna D ◽  
Syed Shameem

Our work aims at the design of wearable electronic modules that can be assembled as systems for sensing, processing, transmitting, actuating and mimicking human hand gestures and movements, to be used in various robotic, educational, military, medical, industrial, general and hobby applications, the secondary focus of our work is reducing the cost, complexity and assembly of such systems, which are already being used by research centers, laboratories and high-class industries all over the world while the primary objective is to bring these systems down to customizable modular components which could be assembled and combined the way the user wishes to and needs them to be, thereby bringing these concepts closer to a wider range of students, enthusiasts and hobbyists making it easy for them to understand and comprehend these concepts even at the beginner level. In our project, we used commonly available piezo-resistive materials and other household items to make force, pressure, stress, strain and bend sensors and appended them to an Inertial measurement unit, a microcontroller and a wireless transceiver all embedded onto a single chip, to create a simple sensing mechanism that could be worn on a human hand to sense, process and transmit the gestures for actuating and mimicking applications.


Author(s):  
Thomas E. Pillsbury ◽  
Ryan M. Robinson ◽  
Norman M. Wereley

Pneumatic artificial muscles (PAMs) are used in robotics applications for their light-weight design and superior static performance. Additional PAM benefits are high specific work, high force density, simple design, and long fatigue life. Previous use of PAMs in robotics research has focused on using “large,” full-scale PAMs as actuators. Large PAMs work well for applications with large working volumes that require high force and torque outputs, such as robotic arms. However, in the case of a compact robotic hand, a large number of degrees of freedom are required. A human hand has 35 muscles, so for similar functionality, a robot hand needs a similar number of actuators that must fit in a small volume. Therefore, using full scale PAMs to actuate a robot hand requires a large volume which for robotics and prosthetics applications is not feasible, and smaller actuators, such as miniature PAMs, must be used. In order to develop a miniature PAM capable of producing the forces and contractions needed in a robotic hand, different braid and bladder material combinations were characterized to determine the load stroke profiles. Through this characterization, miniature PAMs were shown to have comparably high force density with the benefit of reduced actuator volume when compared to full scale PAMs. Testing also showed that braid-bladder interactions have an important effect at this scale, which cannot be modeled sufficiently using existing methods without resorting to a higher-order constitutive relationship. Due to the model inaccuracies and the limited selection of commercially available materials at this scale, custom molded bladders were created. PAMs created with these thin, soft bladders exhibited greatly improved performance.


2002 ◽  
Vol 205 (19) ◽  
pp. 2997-3008 ◽  
Author(s):  
Ravi Ramamurti ◽  
William C. Sandberg ◽  
Rainald Löhner ◽  
Jeffrey A. Walker ◽  
Mark W. Westneat

SUMMARY Many fishes that swim with the paired pectoral fins use fin-stroke parameters that produce thrust force from lift in a mechanism of underwater flight. These locomotor mechanisms are of interest to behavioral biologists,biomechanics researchers and engineers. In the present study, we performed the first three-dimensional unsteady computations of fish swimming with oscillating and deforming fins. The objective of these computations was to investigate the fluid dynamics of force production associated with the flapping aquatic flight of the bird wrasse Gomphosus varius. For this computational work, we used the geometry of the wrasse and its pectoral fin,and previously measured fin kinematics, as the starting points for computational investigation of three-dimensional (3-D) unsteady fluid dynamics. We performed a 3-D steady computation and a complete set of 3-D quasisteady computations for a range of pectoral fin positions and surface velocities. An unstructured, grid-based, unsteady Navier—Stokes solver with automatic adaptive remeshing was then used to compute the unsteady flow about the wrasse through several complete cycles of pectoral fin oscillation. The shape deformation of the pectoral fin throughout the oscillation was taken from the experimental kinematics. The pressure distribution on the body of the bird wrasse and its pectoral fins was computed and integrated to give body and fin forces which were decomposed into lift and thrust. The velocity field variation on the surface of the wrasse body, on the pectoral fins and in the near-wake was computed throughout the swimming cycle. We compared our computational results for the steady, quasi-steady and unsteady cases with the experimental data on axial and vertical acceleration obtained from the pectoral fin kinematics experiments. These comparisons show that steady state computations are incapable of describing the fluid dynamics of flapping fins. Quasi-steady state computations, with correct incorporation of the experimental kinematics, are useful when determining trends in force production, but do not provide accurate estimates of the magnitudes of the forces produced. By contrast, unsteady computations about the deforming pectoral fins using experimentally measured fin kinematics were found to give excellent agreement, both in the time history of force production throughout the flapping strokes and in the magnitudes of the generated forces.


Sign in / Sign up

Export Citation Format

Share Document