ambush predators
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 18)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 103 (1) ◽  
Author(s):  
Kota Sakagami ◽  
Daichi Funamoto ◽  
Shinji Sugiura

2021 ◽  
Author(s):  
Krzysztof Miler ◽  
Inon Scharf

AbstractAlthough ambush predators were previously considered limited in their cognitive abilities compared to their widely foraging relatives, there is accumulating evidence it does not hold true. Pit-building antlions are already known to associate vibrations in the sand with the arrival of prey. We used a T-maze and successfully trained antlions to turn right or left against their initial turning bias, leading to a suitable substrate for digging traps. We present here the first evidence for operant conditioning and T-maze solving in antlions. Furthermore, we show that exposure of second instar larvae to an elevated temperature led to impaired retention of what was learned in a T-maze when tested after moulting into the third instar, compared to larvae raised under a more benign temperature. We suggest that climate change, involving an increase in mean temperatures as well as rare events (e.g., heatwaves) might negatively affect the retention of operant conditioning in antlions, alongside known, more frequently studied effects, such as changes in body size and distribution.


2021 ◽  
pp. 1-11
Author(s):  
Mark S. Teshera ◽  
Rulon W. Clark ◽  
Amy E. Wagler ◽  
Eli Greenbaum

Abstract Most viperids are ambush predators that primarily use venom to subdue prey, employing a strike-release-trail hunting strategy whereby snakes follow the unique scent of envenomated prey to locate carcasses they have bitten and released. In addition to killing prey, rattlesnakes (like most carnivores) will also opportunistically scavenge carrion. This scavenging strategy likely includes the occasional consumption of carcasses killed by other snakes (i.e., kleptoparasitism). In areas with high densities of other pitvipers, utilizing the unique scent of animals envenomated by other snakes might be a viable alternative foraging strategy. We evaluated this possibility experimentally using a series of captive behavioural trials on prairie rattlesnakes (Crotalus viridis) to determine whether conspecific or heterospecific (C. scutulatus, C. ornatus) envenomation cues might increase the likelihood of kleptoparasitism. Rattlesnakes did not prefer envenomated prey over nonenvenomated prey, nor did they prefer venom cues of one species over another. Although they did frequently scavenge carcasses, in the absence of striking, snakes generally located carcasses using random searching movements instead of scent trails. Additionally, the amount of time rattlesnakes spent investigating carcass trails did not differ significantly among treatments, suggesting that striking, and the resultant formation of a chemical search image of prey, is more crucial to trailing behaviour than venom cues. Moreover, a high degree of behavioural variation among individuals was observed, suggesting that scavenging and kleptoparasitism in rattlesnakes is more complex than previously realized, and making generalizations about these behaviours is challenging.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11657
Author(s):  
Shinji Sugiura

Some animals have evolved chemical weapons to deter predators. Bombardier beetles (Coleoptera: Carabidae: Brachininae: Brachinini) can eject toxic chemicals at temperatures of 100 °C from the tips of their abdomens, ‘bombing’ the attackers. Although some bombardier beetles can reportedly deter predators, few studies have tested whether bombing is essential for successful defence. Praying mantises (Mantodea) are ambush predators that attack various arthropods. However, it is unclear whether bombardier beetles deter mantises. To test the defensive function of bombing against praying mantises, I observed three mantis species, Tenodera sinensis, Tenodera angustipennis, and Hierodula patellifera (Mantidae), attacking the bombardier beetle Pheropsophus jessoensis (Carabidae: Brachininae: Brachinini) under laboratory conditions. All mantises easily caught the beetles using their raptorial forelegs, but released them immediately after being bombed. All of the counterattacked mantises were observed to groom the body parts sprayed with hot chemicals after releasing the beetles. When treated P. jessoensis that were unable to eject hot chemicals were provided, all mantises successfully caught and devoured the treated beetles. Therefore, bombing is essential for the successful defence of P. jessoensis against praying mantises. Consequently, P. jessoensis can always deter mantises.


Oecologia ◽  
2021 ◽  
Author(s):  
Stanisław Bury

AbstractSnakes are characterized by distinct foraging strategies, from ambush to active hunting, which can be predicted to substantially affect the energy budget as a result of differential activity rates and feeding frequencies. Intense foraging activity and continuously upregulated viscera as a result of frequent feeding leads to a higher standard metabolic rate (SMR) in active than in ambush predators. Conversely, the costs of digestion (Specific Dynamic Action—SDA) are expected to be higher in ambush predators following the substantial remodelling of the gut upon ingestion of a meal after a long fasting period. This prediction was tested on an interspecific scale using a large multispecies dataset (> 40 species) obtained from published sources. I found that the metabolic scope and duration of SDA tended to reach higher values in ambush than in active predators, which probably reflects the greater magnitude of postprandial physiological upregulation in the former. In contrast, the SDA energy expenditure appeared to be unrelated to the foraging mode. The costs of visceral activation conceivably are not negligible, but represent a minor part of the total costs of digestion, possibly not large enough to elicit a foraging-mode driven variation in SDA energy expenditure. Non-mutually exclusive is that the higher costs of structural upregulation in ambush predators are balanced by the improved, thus potentially less expensive, functional performance of the more efficient intestines. I finally suggest that ambush predators may be less susceptible than active predators to the metabolic ‘meltdown effect’ driven by climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dulce Rodríguez-Morales ◽  
Horacio Tapia-McClung ◽  
Luis E. Robledo-Ospina ◽  
Dinesh Rao

AbstractAmbush predators depend on cryptic body colouration, stillness and a suitable hunting location to optimise the probability of prey capture. Detection of cryptic predators, such as crab spiders, by flower seeking wasps may also be hindered by wind induced movement of the flowers themselves. In a beach dune habitat, Microbembex nigrifrons wasps approaching flowerheads of the Palafoxia lindenii plant need to evaluate the flowers to avoid spider attack. Wasps may detect spiders through colour and movement cues. We tracked the flight trajectories of dune wasps as they approached occupied and unoccupied flowers under two movement conditions; when the flowers were still or moving. We simulated the appearance of the spider and the flower using psychophysical visual modelling techniques and related it to the decisions made by the wasp to land or avoid the flower. Wasps could discriminate spiders only at a very close range, and this was reflected in the shape of their trajectories. Wasps were more prone to making errors in threat assessment when the flowers are moving. Our results suggest that dune wasp predation risk is augmented by abiotic conditions such as wind and compromises their early detection capabilities.


Ecology ◽  
2021 ◽  
Author(s):  
Kota Sakagami ◽  
Daichi Funamoto ◽  
Shinji Sugiura

EDIS ◽  
2021 ◽  
Vol 2021 (2) ◽  
pp. 3
Author(s):  
Taryn Griffith ◽  
Jennifer Gillett-Kaufman

Commonly mistaken for other objects due to its appearance, hence the common name water stick-insect, this slender reddish-brown insect is commonly found in fresh or brackish water (a mix of salt and fresh water) (Anufriyeva et al. 2016). They are ambush predators and will spend most of its time in the water waiting for prey. They are limited to the length of their raptorial forearms in terms of catching prey. In the southeastern United States, these insects are commonly referred to as water scorpions. Also published on the Featured Creatures website at http://entnemdept.ufl.edu/creatures/AQUATIC/Ranatra.html


2021 ◽  
Author(s):  
Dulce Rodriguez-Morales ◽  
Horacio Tapia-McClung ◽  
Luis E. Robledo Ospina ◽  
Dinesh Rao

Ambush predators depend on cryptic body colouration, stillness and a suitable hunting location to optimise the probability of prey capture. Detection of cryptic predators, such as crab spiders, by flower seeking wasps may also be hindered by wind induced movement of the flowers themselves. In a beach dune habitat, as Microbembex nigrifrons wasps approach flowerheads of the Palafoxia lindenii plant, they need to evaluate the flowers and avoid landing on crab spider occupied flowers. Wasps may detect spiders through colour and movement cues. We tracked the flight trajectories of dune wasps as they approached occupied and unoccupied flowers under two movement conditions; when the flowers were still or moving. We simulated the appearance of the spider and the flower using psychophysical visual modelling techniques and related it to the decisions made by the wasp to land or avoid the flower. Wasps could discriminate spiders only at a very close range, and this was reflected in the shape of their trajectories. Wasps were more prone to making errors in threat assessment when the flowers are moving. Our results suggest that dune wasp predation risk is augmented by abiotic conditions such as wind and compromises their early detection capabilities.


2021 ◽  
Author(s):  
João Vitor Alcantara Viana ◽  
Murilo Massufaro Giffu ◽  
Leandro Hachuy‐Filho
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document