A Study About Performance Evaluation Criteria of Tube Banks With Various Shapes and Arrangements Using Numerical Simulation

2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Amin Jodaei ◽  
Kamiar Zamzamian

Tube bank heat exchangers are designed to efficiently transfer heat between two fluids. Shapes and arrangements of tubes in heat exchangers have significant effects in heat transfer and pressure drop of fluid. In this study, the three-dimensional (3D) numerical investigation is performed to determine heat transfer coefficients, friction factor, and performance evaluation criteria (PEC) of cam-shaped tube banks in aerodynamic and inverse aerodynamic directions in the cross flow air and compared with those of elliptical tube banks in heat exchanger. The arrangements of tubes are aligned and staggered with longitudinal pitch of 44.88 mm and transverse pitch of 28.05 mm. Reynolds number in the range of 11,500–18,500 was used, and the tube surface temperature was fixed and considered 352 K. Results indicate the superior heat transfer of elliptical tube bank over the cam-shaped tube banks in inverse aerodynamic and aerodynamic directions in both arrangements. Moreover, the PEC of the cam-shaped tube banks with inverse aerodynamic and aerodynamic directions and elliptical tube bank in aligned arrangement are approximately 1.4, 1.1, and 1.6, respectively. The obtained results for staggered arrangements are also 1.5, 1.3, and 1.8, respectively.

2005 ◽  
Author(s):  
D. K. Tafti

The paper describes two- and three-dimensional computer simulations which are used to study fundamental flow and thermal phenomena in multilouvered fins used for air-side heat transfer enhancement in compact heat exchangers. Results pertaining to flow transition, thermal wake interference, and fintube junction effects are presented. It is shown that a Reynolds number based on flow path rather than louver pitch is more appropriate in defining the onset of transition, and characteristic frequencies in the louver bank scale better with a global length scale such as fin pitch than with louver pitch or thickness. With the aid of computer experiments, the effect of thermal wakes is quantified on the heat capacity of the fin as well as the heat transfer coefficient, and it is established that experiments which neglect accounting for thermal wakes can introduce large errors in the measurement of heat transfer coefficients. Further, it is shown that the geometry of the louver in the vicinity of the tube surface has a large effect on tube heat transfer and can have a substantial impact on the overall heat capacity.


1981 ◽  
Vol 103 (4) ◽  
pp. 705-714 ◽  
Author(s):  
J. C. Biery

A new method is presented to predict heat transfer coefficients for gas flow normal to smooth and finned tube tanks with triangular pitch. A transformation from the actual tube bank to an equivalent equilateral triangular pitch infinite smooth tube bank (ETP-I-STB) is made. A function of Ch(Ch = NSTNPR2/3NRe0.4) versus (Xt D0)Δ, ratio of transverse pitch to tube diameter for the ETP-I-STB, was developed. The Ch for the equivalent ETP-I-STP then applies to the actual tube bank. The method works with circular finned tubes, smooth tubes, continuous finned tubes, and segmented finned tubes with any triangular pitch. Also, fair predictions were made for in-line tubes with high Reynolds numbers.


Fractals ◽  
2018 ◽  
Vol 26 (05) ◽  
pp. 1850073 ◽  
Author(s):  
DONGHUI ZHANG ◽  
YANLIN SHEN ◽  
ZHIPING ZHOU ◽  
JIAN QU ◽  
HAIYANG XU ◽  
...  

Convective heat transfer process between fractal tube bank and coolant water was simulated by using the finite element method. Both rectangular and circular tube banks were investigated in detail. For the relationship between Nusselt number and Reynolds number, the fractal circular tube bank shows the same trend as the rectangular tube one. Based on simulation results, the empirical heat transfer correlations for different stage fractals were regressed. The exponents of correlations increase with the fractal stage. Almost linear correlations between Nu and Re for fourth stage fractal were obtained, indicating a good heat transfer enhancement with the increase in fractal stages. Compared to the uniform tube bank, the fractal tube banks show better overall performance in enhanced heat transfer effect. This research would be helpful to understand the heat exchange mechanism of the multi-scale structure.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
P. Gunnasegaran ◽  
N. H. Shuaib ◽  
M. F. Abdul Jalal

Compact heat exchangers (CHEs) have been widely used in various applications in thermal fluid systems including automotive thermal management systems. Among the different types of heat exchangers for engine cooling applications, cross-flow CHEs with louvered fins are of special interest because of their higher heat rejection capability with the lower flow resistance. In this study, the effects of geometrical parameters such as louver angle and fin pitch on air flow and heat transfer characteristics on CHEs are numerically investigated. Numerical investigations using five different cases with increased and decreased louver angles (+2°, +4°, −2°, −4°, and uniform angle 20°), with a fixed fin pitch and using three different fin pitches (1.0 mm, 2.0 mm, and 4.0 mm), and with the fixed louver angle are examined. The three-dimensional (3D) governing equations for the fluid flow and heat transfer are solved using a standard finite-volume method (FVM) for the range of Reynolds number between 100 and 1000. The computational model is used to study the variations of pressure drop, flow temperature, and Nusselt number.


2012 ◽  
Vol 33 (3) ◽  
pp. 1-24 ◽  
Author(s):  
Dawid Taler

Abstract This paper presents a numerical method for determining heat transfer coefficients in cross-flow heat exchangers with extended heat exchange surfaces. Coefficients in the correlations defining heat transfer on the liquid- and air-side were determined using a nonlinear regression method. Correlation coefficients were determined from the condition that the sum of squared liquid and air temperature differences at the heat exchanger outlet, obtained by measurements and those calculated, achieved minimum. Minimum of the sum of the squares was found using the Levenberg-Marquardt method. The uncertainty in estimated parameters was determined using the error propagation rule by Gauss. The outlet temperature of the liquid and air leaving the heat exchanger was calculated using the analytical model of the heat exchanger.


Author(s):  
D. Maurya ◽  
S. Tiwari ◽  
G. Biswas ◽  
V. Eswaran ◽  
A. K. Saha

Unsteady three-dimensional laminar flow and heat transfer in a channel with a built-in oval tube and delta winglets have been obtained through the solution of the complete Navier-Stokes and energy equations using a body-fitted grid and a finite-volume method. The geometrical configuration represents an element of a gas-liquid fin-tube cross flow heat exchanger. The air-cooled condensers of the geothermal power plants also use fin-tube heat exchangers. The size of such heat exchangers can be reduced through enhancement in transport coefficients on the air (gas) side, which are usually small compared to the liquid side. In a suggested strategy, oval tubes are used in place of circular tubes, and delta winglet type vortex generators in common-flow-down configuration are mounted on the fin-surface in front of the tubes, while another delta winglet pair in common-flow-up configuration is mounted downstream of the first set of winglets. An evaluation of this augmentation strategy is attempted in this investigation. The investigation was carried out for a winglet angle of attack of 40 degrees to the incoming flow. The structures of the velocity field, and the heat transfer characteristics have been presented. The results indicate that vortex generators in conjunction with the oval tube show definite promise for the improvement of fin-tube heat exchangers.


2014 ◽  
Vol 353 ◽  
pp. 121-125
Author(s):  
Raquel da Cunha Ribeiro da Silva ◽  
C.T. Salinas ◽  
P.A. Delgado ◽  
K.A.R. Ismail

This paper presents a frost numerical model for predicting the frosting behavior in terms of the correlation of the heat transfer coefficient, Nusselt number. In this work the correlations of the Nusselt number from various references is examined and compared with experimental data. In this study, a mathematical model that can predict the behavior of the frost growth on a bank of triangularly arranged tubes is developed. Because of the complex heat transfer during frost formation on a tube bank, this subject is receiving much attention. Heat transfer in flow across a bank of tubes has particular importance in the design of heat exchangers. For this study various empirical relations are analyzed to determine the Nusselt number and compared with experimental data.


2006 ◽  
Vol 10 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Ventsislav Zimparov ◽  
Plamen Penchev ◽  
Joshua Meyer

Different techniques as angled spiraling tape inserts, a round tube in side a twisted square tube and spiraled tube in side the annulus have been used to enhance heat transfer in the annulus of tube-in-tube heat exchangers. The heat transfer enhancement in the shell can be supplemented by heat transfer augmentation in tubes using twisted tape inserts or micro-finned tubes. The effect of the thermal resistance of the condensing refrigerant could also be taken into consideration. To assess the benefit of using these techniques extended performance evaluation criteria have been implemented at different constraints. The decrease of the entropy generation can be combined with the relative in crease of the heat transfer rate or the relative reduction of the heat transfer area to find out the geometrical parameters of the tubes for optimal thermodynamics performance. The results show that in most of the cases considered, the angled spiraling tube insert technique is the most efficient.


Sign in / Sign up

Export Citation Format

Share Document