Double Stratification in Flow by Curved Stretching Sheet With Thermal Radiation and Joule Heating

Author(s):  
Tasawar Hayat ◽  
Sumaira Qayyum ◽  
Maria Imtiaz ◽  
Ahmed Alsaedi

Magnetohydrodynamic (MHD) flow of viscous fluid by curved stretching surface is presented in this paper. Heat and mass transfer analysis is studied with double stratification and thermal radiation effects. Joule heating is also taken into consideration. Basic equations of flow problem are obtained using curvilinear coordinates. The partial differential equations are reduced to the nonlinear ordinary differential equations using suitable transformations. Graphical results are shown and analyzed for the effect of different parameters on fluid characteristics. It is noted that thermal and solutal stratification parameters have opposite effect on temperature and concentration distributions. Magnitude of pressure, skin friction coefficient, and Nusselt number decreases for larger curvature parameter.

2019 ◽  
Vol 97 (6) ◽  
pp. 579-587
Author(s):  
Azad Hussain ◽  
Zainia Muneer ◽  
M.Y. Malik ◽  
Saadia Ghafoor

The present study focuses on the non-Newtonian magnetohydrodynamic flow, under the kinetic postulate, of fluids that are initially liquid past a porous plate in the appearance of thermal radiation effects. Resemblance transfigurations are used to metamorphose the governing equations for temperature and velocity into a system of ordinary differential equations. We then solved these differential equations subject to convenient boundary conditions by using the shooting method along with the Runge–Kutta method. Heat transfer and characteristic flow results are acquired for different compositions of physical parameters. These results are extended graphically to demonstrate interesting attributes of the physics of the problem. Nusselt number and skin friction coefficients are also discussed via graphs and tables for different values of dimensionless parameters. Decline occurs in velocity profile due to escalating values of M. Temperature profile depicts growing behavior due to acceleration in the values of λ and M. Nusselt number and skin friction curves represent rising behavior according to their parameters.


2020 ◽  
Vol 68 (1) ◽  
pp. 1-10
Author(s):  
Lavanya

The present paper is concerned to analyze the effect of hall current on heat and thermal radiation and mass transfer of unsteady MHD flow of a viscoelastic micropolar fluid through a porous medium with chemical reaction. The governing partial differential equations are transformed to dimensionless equations using dimensionless variables. The dimensionless governing equations are then solved analytically using perturbation technique. The effects of various governing parameters on the velocity, temperature, concentration, skin-friction coefficient, Nusselt number and Sherwood number are shown in figures and tables and analyzed in detail.


2009 ◽  
Vol 14 (1) ◽  
pp. 27-40 ◽  
Author(s):  
M.-E. M. Khedr ◽  
A. J. Chamkha ◽  
M. Bayomi

This work considers steady, laminar, MHD flow of a micropolar fluid past a stretched semi-infinite, vertical and permeable surface in the presence of temperature dependent heat generation or absorption, magnetic field and thermal radiation effects. A set of similarity parameters is employed to convert the governing partial differential equations into ordinary differential equations. The obtained self-similar equations are solved numerically by an efficient implicit, iterative, finite-difference method. The obtained results are checked against previously published work for special cases of the problem in order to access the accuarcy of the numerical method and found to be in excellent agreement. A parametric study illustrating the influence of the various physical parameters on the skin friction coefficient, microrotaion coefficient or wall couple stress as well as the wall heat transfer coefficient or Nusselt number is conducted. The obtained results are presented graphically and in tabular form and the physical aspects of the problem are discussed.


2020 ◽  
Vol 9 (11) ◽  
pp. 9259-9271
Author(s):  
K.R. Babu ◽  
G. Narender ◽  
K. Govardhan

A two-dimensional stream of an magnetohydrodynamics (MHD) Eyring-Powell fluid on a stretching surface in the presence of thermal radiation, viscous dissipation and the Joule heating is analyzed. The flow model in the form of the Partial Differential Equations (PDEs) is transformed into a system of non-linear and coupled Ordinary Differential Equations (ODEs) by implementing appropriate similarity transformations. The resulting ordinary differential equations are solved numerically by the shooting technique with Adams-Moulton Method of fourth order. The numerical solution obtained for the velocity and temperature profiles has been presented through graphs for different choice of the physical parameters. The magnetic field is found to have a direct relation with the temperature profile and an inverse with the velocity profile. Increasing the thermal radiation, the temperature tends to rise.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
M. Subhas Abel ◽  
Jagadish V. Tawade ◽  
Jyoti N. Shinde

An analysis is performed to investigate the effect of MHD and thermal radiation on the two-dimensional steady flow of an incompressible, upper-convected Maxwells (UCM) fluid in presence of external magnetic field. The governing system of partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and is solved numerically by efficient shooting technique. Velocity and temperature fields have been computed and shown graphically for various values of physical parameters. For a Maxwell fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for the higher elastic number which agrees with the results of Hayat et al. 2007 and Sadeghy et al. 2006. The objective of the present work is to investigate the effect of elastic parameterβ, magnetic parameterMn, Eckert numberEc, Radiation parameterN,and Prandtl numberPron flow and heat transfer charecteristics.


2020 ◽  
Vol 64 ◽  
pp. 75-91 ◽  
Author(s):  
Nur Syahirah Wahid ◽  
Norihan Md Arifin ◽  
Mustafa Turkyilmazoglu ◽  
Mohd Ezad Hafidz Hafidzuddin ◽  
Nor Aliza Abd Rahmin

The influence of velocity slip and thermal radiation effects on the magnetohydrodynamic hybrid Cu-Al2O3/water nanofluid flow over a permeable stretching sheet is reported in this paper. The similarity transformation is adopted to reduce the partial differential equations to the ordinary differential equations. Exact analytical method is implemented to solve the problem. Maple program is used to facilitate the calculation process. The new additional effects which are the velocity slip and thermal radiation effects are considered towards the model to scrutinize the impacts. The effects of various parameters towards the velocity and temperature profiles are demonstrated through graphs, meanwhile the skin friction coefficient and the local Nusselt number are exhibited through the tabulation of data. The existence of velocity slip reduced the velocity profile but enhanced the temperature profile. The thermal radiation effect has increased the temperature profile. The heat transfer rate are enhanced for the case of hybrid nanofluid compared to the mono nanofluid.


2020 ◽  
Vol 25 (3) ◽  
pp. 103-116
Author(s):  
R.P. Sharma ◽  
Seema Tinker ◽  
B.J. Gireesha ◽  
B. Nagaraja

AbstractA free convection viscous MHD flow over a semi-infinite vertical sheet with convective heat and mass conditions has been considered. The effects of thermal radiation, chemical reaction and Joule heating on flow are also accounted. The governing nonlinear partial differential equations have been transformed into a set of highly non-linear coupled ordinary differential equations (ODEs) using appropriate similarity transformations. Numerical solutions of transformed equations are obtained by employing the 5th order Runge-Kutta Fehlberg technique followed by the shooting technique. The influences of different flow parameters on the momentum, energy and mass field are discussed and shown graphically. Results reveal that temperature and concentration profiles enhance due to increasing heat and mass Biot number parameters.


2017 ◽  
Vol 6 (3) ◽  
Author(s):  
K. Ganesh Kumar ◽  
N.G. Rudraswamy ◽  
B.J. Gireesha ◽  
M.R. Krishnamurthy

AbstractPresent exploration discusses the combined effect of viscous dissipation and Joule heating on three dimensional flow and heat transfer of a Jeffrey nanofluid in the presence of nonlinear thermal radiation. Here the flow is generated over bidirectional stretching sheet in the presence of applied magnetic field by accounting thermophoresis and Brownian motion of nanoparticles. Suitable similarity transformations are employed to reduce the governing partial differential equations into coupled nonlinear ordinary differential equations. These nonlinear ordinary differential equations are solved numerically by using the Runge–Kutta–Fehlberg fourth–fifth order method with shooting technique. Graphically results are presented and discussed for various parameters. Validation of the current method is proved by comparing our results with the existing results under limiting situations. It can be concluded that combined effect of Joule and viscous heating increases the temperature profile and thermal boundary layer thickness.


2017 ◽  
Vol 55 (3) ◽  
pp. 630-651 ◽  
Author(s):  
Yahaya Shagaiya Daniel ◽  
Zainal Abdul Aziz ◽  
Zuhaila Ismail ◽  
Faisal Salah

Sign in / Sign up

Export Citation Format

Share Document