Excitation Tests on Elbow Pipe Specimens to Investigate Failure Behavior Under Excessive Seismic Loads

2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Izumi Nakamura ◽  
Naoto Kasahara

The accident at the Fukushima Dai-ichi Nuclear Power Plant (NPP) resulting from the 2011 Great East Japan Earthquake raised awareness as to the importance of considering Beyond Design Basis Events (BDBE) when planning for safe management of NPPs. In considering BDBE, it is necessary to clarify the possible failure modes of structures under extreme loading. Because piping systems are one of the representative components of NPPs, an experimental investigation was conducted on the failure of a pipe assembly under simulated excessive seismic loads. The failure mode obtained by excitation tests was mainly fatigue failure. The reduction of the dominant frequency and the increase of hysteresis damping were clearly observed in high-level input acceleration due to plastic deformation, and they greatly affected the specimens’ vibration response. Based on the experimental results, a procedure is proposed for calculating experimental stress intensities based on excitation test so that they can be compared with design limitations.

Author(s):  
Izumi Nakamura ◽  
Naoto Kasahara

After the accident at Fukushima Dai-ichi Nuclear Power Plant in the 2011 Great East Japan Earthquake, the International Atomic Energy Agency (IAEA) requires to consider the design extension conditions (DEC) for the safety management of nuclear power plants (NPPs). In considering DEC, it is necessary to clarify the possible failure modes of the structures and their mechanism under the extreme loadings. Because piping systems are one of the representative components of NPP, and there is a possibility to failure at seismic events, the authors conducted an experimental investigation on failure modes and their mechanisms of piping systems under excessive seismic loads. The experiments are categorized into the fundamental plate tests and pipe component tests. In this paper, the results of the pipe component tests would be described. In the pipe component tests, the authors used piping specimens constituted with one steel elbow and a weight. Though the input acceleration level was much over the allowable level to prevent collapse failure by the seismic design, the failure mode obtained by the excitation tests were mainly the fatigue failure. The reduction of the dominant frequency and the increase of the hysteresis damping were clearly observed in the high-level input acceleration due to the plastic deformation, and they affected the specimens’ vibration response greatly.


Author(s):  
Izumi Nakamura ◽  
Naoto Kasahara

Abstract To investigate the failure behavior of piping systems under excessive seismic loads, shaking table tests on piping system models made of a simulation material have been executed. The simulation material adopted in the experiment was lead-antimony (Pb-Sb) alloy. The piping system model was composed of two elbows made of Pb-Sb alloy, one additional mass, and two fixed anchors. Input motions were sinusoidal wave. The failure modes of the piping system were examined by varying the additional mass and frequency of the input sinusoidal wave. Through the excitation tests, the failure mode which was named as “ratchet and subsequent collapse” was obtained successfully. The result which was classified as “no failure after 500 cycles” was also obtained. It was found that the occurrence of the failure depended on the ratio of the input frequency to the specimen’s natural frequency, and the ratio of additional mass weight to the limit mass weight. Though the effect of higher modes on the failure behavior was necessary to be more investigated, it seemed that the tendency of dominant failure behavior was similar to that of the single-elbow specimen investigated in the previous study. Moreover, it was confirmed that the experimental approach to use a simulation material was applicable for piping system model with multiple elbows.


Author(s):  
Izumi Nakamura ◽  
Naoto Kasahara

Abstract To investigate the failure behavior of piping systems under severe seismic loads considering beyond design basis event (BDBE), an experimental approach to use pipes made of simulation materials was applied. "Simulation material" means the substitute material for steel to realize the structural experiment by the existing testing facilities. The simulation materials adopted in this study were pure lead (Pb) or lead-antimony (Pb-Sb) alloy. Using pipe elbows made of simulation materials, static loading tests on elbows and shaking table tests on simple piping system models composed of one or two elbows and an additional mass were conducted. From the static loading tests, the load-deflection relationship of an elbow under monotonic loading was obtained as well as the fatigue failure modes under cyclic loading depending on the several cyclic displacement levels. From the shaking table tests, several failure modes were obtained, namely, "Collapse by self-weight", "Collapse by a few cycles of input", "Ratchet and subsequent collapse", "Overall deformation", and "No failure". It was considered that the occurrence of these failure modes was affected by the ratio of the input frequency to the specimen's natural frequency, the ratio of additional mass weight to the limit mass weight, the configuration of the specimen, and the input acceleration level. The experimental results indicated that it was crucial to understand the structure's ultimate behavior when treating BDBE, and that the research approach using simulation material is effective to investigate the ultimate behavior of piping systems.


2004 ◽  
Vol 126 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Shaking table tests of three-dimensional piping models with degradation were conducted in order to investigate the influence of degradation on dynamic behavior and failure modes of piping systems. The degradation condition induced in the piping models was about 50 percent full circumferential wall thinning at elbows. Four types of models were made for the shaking table tests by varying the location of wall thinning in the piping models. These models were excited under the same input acceleration until the models failed and a leak of pressurized internal water occurred. Through these tests, the change of the vibration characteristics and processes to failure of degraded piping models were obtained. The deformation of the piping models tended to concentrate on the degraded elbows, and the damage was concentrated on the weakest elbow in the piping models. The failure mode of the piping models was a low-cycle fatigue failure at the weakest elbow.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on dynamic behavior and failure modes of piping systems, shaking table tests of 3-D piping models with degradation were conducted. The degradation condition induced in the piping models was about 50% full circumferential wall thinning at an elbow or elbows. By varying the induced parts in the piping model, 4 kinds of models were made for the shaking table tests. These models were excited under the same input acceleration until the models failed and caused leak of pressurized internal water. Through these tests, the change of the vibration characteristic and the process to failure of degraded piping models were obtained. The deformation of the piping models tended to concentrate on the degraded elbows, and therefore the damage concentrated to a weakest elbow in the piping models. The failure mode of the piping models was a low-cycle fatigue failure at the weakest elbow.


Author(s):  
Abhinav Gupta ◽  
Ankit Dubey ◽  
Sunggook Cho

Abstract Nuclear industry spends enormous time and resources on designing and managing piping nozzles in a plant. Nozzle locations are considered as a potential location for possible failure that can lead to loss of coolant accident. Industry spends enormous time in condition monitoring and margin management at nozzle locations. Margins against seismic loads play a significant role in the overall margin management. Available margins against thermal loads are highly dependent upon seismic margins. In recent years, significant international collaboration has been undertaken to study the seismic margin in piping systems and nozzles through experimental and analytical studies. It has been observed that piping nozzles are highly overdesigned and the margins against seismic loads are quite high. While this brings a perspective of sufficient safety, such excessively high margins compete with available margins against thermal loads particularly during the life extension and subsequent license renewal studies being conducted by many plants around the world. This paper focuses on identifying and illustrating two key reasons that lead to excessively conservative estimates of nozzle fragilities. First, it compares fragilities based on conventional seismic analysis that ignores piping-equipment-structure interaction on nozzle fragility with the corresponding assessment by considering such interactions. Then, it presents a case that the uncertainties considered in various parameters for calculating nozzle fragility are excessively high. The paper identifies a need to study the various uncertainties in order to achieve a more realistic quantification based on recent developments in our understanding of the seismic behavior of piping systems.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used in nuclear power plants are supposed to be degraded by the effects of aging. Local wall thinning is one of the defects considered to be caused in piping systems due to the effects of aging, but the failure behavior of thinned wall pipes under seismic load is still not clear. Therefore an experimental and analytical study to clarify the failure behavior of thinned wall pipes is being conducted. In this paper, the experimental results of locally thinned wall elbows under cyclic bending load are described. Displacement-controlled cyclic bending tests were conducted on elbows with local wall thinning. The test models were pressurized to 10MPa with room temperature water and were subjected to in-plane or/and out-of-plane cyclic bending load until their failures. From the tests, the failure modes of the thinned wall elbows were found to be fatigue failure at the flank of the elbow, or fatigue and buckling failure accompanied with ratchet deformation. It was also found that the life of the thinned wall elbow subjected to out-of-plane bending were extremely lower than that of the elbow without wall thinning. The failure modes and fatigue lives of elbows seemed to be affected by a ratchet phenomenon.


Author(s):  
Jinsuo Nie ◽  
Giuliano DeGrassi ◽  
Charles H. Hofmayer ◽  
Syed A. Ali

The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the U.S. and Japan on seismic issues, the U.S. Nuclear Regulatory Commission (NRC)/ Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using detailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.


Author(s):  
Naoto Kasahara ◽  
Takashi Wakai ◽  
Izumi Nakamura ◽  
Takuya Sato

Abstract For safety improvement after Fukushima daiichi nuclear power plant accident, mitigation of accident consequence for Beyond Design Basis Events (BDBE) has become important. Authors propose application of fracture control concept for mitigation of accident consequence of nuclear plants as follows. In the case of reactor vessels under high temperature and pressure conditions, small cracks from local failure will release internal pressure and can avoid a large scale ductile fracture of general portions. For piping under excessive earthquake, repeated elastic-plastic deformation and ratchet deformation dissipate vibration energy and reduce input energy from floor. They can prevent collapse of piping systems or break of pipe wall. Strength of pipe supports can be designed lower than pipe itself. Controlling the failure of supports would lead to plastic deformation without the break. The ratio of the frequency of seismic loading to the natural frequency of the piping system would also affect the failure behavior of piping systems. This paper describes research plan and progress to realize fracture control of nuclear components. The first step is clarification of actual failure modes and their mechanisms. Next step is development of relative strength evaluation method among failure modes. The third step is proposals of failure control methods. One of example is a vessel under high pressure and high temperature loadings. Another example is pipe under excessive earthquake.


Author(s):  
Izumi Nakamura ◽  
Masaki Shiratori ◽  
Akihito Otani ◽  
Masaki Morishita ◽  
Tadahiro Shibutani ◽  
...  

According to investigations of several nuclear power plants (NPPs) hit by actual seismic events and a number of experimental researches on the failure behavior of piping systems under seismic loads, it is recognized that piping systems used in NPPs include a large seismic safety margin until boundary failure and the current code design allowable stresses are very conservative. Since the stress assessment based on the elastic analysis does not reflect actual response of piping systems including plastic region, rational procedures to estimate the elastic-plastic behavior of piping systems under a large seismic load are expected to be developed for piping seismic design applications. With the aim of establishing a procedure that takes into account the elastic-plastic behavior effect in the seismic safety estimation of nuclear piping systems, a research activity has been planned. Through the activity, the authors intend to establish two kinds of guidelines; 1) a guideline of a standard analysis procedure to evaluate elastic-plastic behavior of piping systems under extreme seismic loads with rational and conservative margins, and 2) a guideline that provide criteria for the seismic safety assessment of piping systems by the standard analysis to evaluate elastic-plastic behavior established by the above guideline. As the first step of making out the analysis guideline, benchmark analyses are conducted for a pipe element test and a piping system test. In this paper, the outline of the research activity and the preliminary results of benchmark analyses for a pipe element test are described.


Sign in / Sign up

Export Citation Format

Share Document