scholarly journals Assessment of 11 Available Materials With Custom Three-Dimensional-Printing Patterns for the Simulation of Muscle, Fat, and Lung Hounsfield Units in Patient-Specific Phantoms

Author(s):  
Nikiforos Okkalidis ◽  
Chrysoula Chatzigeorgiou ◽  
Demetrios Okkalides

A couple of fused deposition modeling (FDM) three-dimensional (3D) printers using variable infill density patterns were employed to simulate human muscle, fat, and lung tissue as it is represented by Hounsfield units (HUs) in computer tomography (CT) scans. Eleven different commercial plastic filaments were assessed by measuring their mean HU on CT images of small cubes printed with different patterns. The HU values were proportional to the mean effective density of the cubes. Polylactic acid (PLA) filaments were chosen. They had good printing characteristics and acceptable HU. Such filaments obtained from two different vendors were then tested by printing two sets of cubes comprising 10 and 6 cubes with 100% to 20% and 100% to 50% infill densities, respectively. They were printed with different printing patterns named “Regular” and “Bricks,” respectively. It was found that the HU values measured on the CT images of the 3D-printed cubes were proportional to the infill density with slight differences between vendors and printers. The Regular pattern with infill densities of about 30%, 90%, and 100% were found to produce HUs equivalent to lung, fat, and muscle. This was confirmed with histograms of the respective region of interest (ROI). The assessment of popular 3D-printing materials resulted in the choice of PLA, which together with the proposed technique was found suitable for the adequate simulation of the muscle, fat, and lung HU in printed patient-specific phantoms.

2015 ◽  
Vol 8 (5) ◽  
pp. 517-520 ◽  
Author(s):  
Jeff R Anderson ◽  
Walker L Thompson ◽  
Abdulaziz K Alkattan ◽  
Orlando Diaz ◽  
Richard Klucznik ◽  
...  

ObjectiveTo develop and validate a method for creating realistic, patient specific replicas of cerebral aneurysms by means of fused deposition modeling.MethodsThe luminal boundaries of 10 cerebral aneurysms, together with adjacent proximal and distal sections of the parent artery, were segmented based on DSA images, and corresponding virtual three-dimensional (3D) surface reconstructions were created. From these, polylactic acid and MakerBot Flexible Filament replicas of each aneurysm were created by means of fused deposition modeling. The accuracy of the replicas was assessed by quantifying statistical significance in the variations of their inner dimensions relative to 3D DSA images. Feasibility for using these replicas as flow phantoms in combination with phase contrast MRI was demonstrated.Results3D printed aneurysm models were created for all 10 subjects. Good agreement was seen between the models and the source anatomy. Aneurysm diameter measurements of the printed models and source images correlated well (r=0.999; p<0.001), with no statistically significant group difference (p=0.4) or observed bias. The SDs of the measurements were 0.5 mm and 0.2 mm for source images and 3D models, respectively. 3D printed models could be imaged with flow via MRI.ConclusionsThe 3D printed aneurysm models presented were accurate and were able to be produced inhouse. These models can be used for previously cited applications, but their anatomical accuracy also enables their use as MRI flow phantoms for comparison with ongoing studies of computational fluid dynamics. Proof of principle imaging experiments confirm MRI flow phantom utility.


2021 ◽  
pp. 002199832098856
Author(s):  
Marcela Piassi Bernardo ◽  
Bruna Cristina Rodrigues da Silva ◽  
Luiz Henrique Capparelli Mattoso

Injured bone tissues can be healed with scaffolds, which could be manufactured using the fused deposition modeling (FDM) strategy. Poly(lactic acid) (PLA) is one of the most biocompatible polymers suitable for FDM, while hydroxyapatite (HA) could improve the bioactivity of scaffold due to its chemical composition. Therefore, the combination of PLA/HA can create composite filaments adequate for FDM and with high osteoconductive and osteointegration potentials. In this work, we proposed a different approache to improve the potential bioactivity of 3D printed scaffolds for bone tissue engineering by increasing the HA loading (20-30%) in the PLA composite filaments. Two routes were investigated regarding the use of solvents in the filament production. To assess the suitability of the FDM-3D printing process, and the influence of the HA content on the polymer matrix, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were performed. The HA phase content of the composite filaments agreed with the initial composite proportions. The wettability of the 3D printed scaffolds was also increased. It was shown a greener route for obtaining composite filaments that generate scaffolds with properties similar to those obtained by the solvent casting, with high HA content and great potential to be used as a bone graft.


2017 ◽  
Vol 23 (4) ◽  
pp. 804-810 ◽  
Author(s):  
Shiqing Cao ◽  
Dandan Yu ◽  
Weilan Xue ◽  
Zuoxiang Zeng ◽  
Wanyu Zhu

Purpose The purpose of this paper is to prepare a new modified polybutylene terephalate (MPBT) for fused deposition modeling (FDM) to increase the variety of materials compatible with printing. And the printing materials can be used to print components with a complex structure and functional mechanical parts. Design/methodology/approach The MPBT, poly(butylene terephalate-co-isophthalate-co-sebacate) (PBTIS), was prepared for FDM by direct esterification and subsequent polycondensation using terephthalic acid (PTA), isophthalic acid (PIA), sebacic acid (SA) and 1,4-butanediol (BDO). The effects of the content of PIA (20-40 mol%) on the mechanical properties of PBTIS were investigated when the mole per cent of SA (αSA) is zero. The effects of αSA (0-7mol%) on the thermal, rheological and mechanical properties of PBTIS were investigated at nPTA/nPIA = 7/3. A desktop wire drawing and extruding machine was used to fabricate the filaments, whose printability and anisotropy were tested by three-dimensional (3D) printing experiments. Findings A candidate content of PIA introducing into PBT was obtained to be about 30 per cent, and the Izod notched impact strength of PBTIS increased with the increase of αSA. The results showed that the PBTIS (nPTA/nPIA = 7/3, αSA = 3-5mol%) is suitable for FDM. Originality/value New printing materials with good Izod notched impact strength were obtained by introducing PIA and SA (nPTA/nPIA = 7/3, αSA = 3-5 mol%) into PBT and their anisotropy are better than that of ABS.


2018 ◽  
Vol 88 (3) ◽  
pp. 363-369 ◽  
Author(s):  
Raymund E. Rebong ◽  
Kelton T. Stewart ◽  
Achint Utreja ◽  
Ahmed A. Ghoneima

ABSTRACT Objectives: The aim of this study was to assess the dimensional accuracy of fused deposition modeling (FDM)–, Polyjet-, and stereolithography (SLA)–produced models by comparing them to traditional plaster casts. Materials and A total of 12 maxillary and mandibular posttreatment orthodontic plaster casts were selected from the archives of the Orthodontic Department at the Indiana University School of Dentistry. Plaster models were scanned, saved as stereolithography files, and printed as physical models using three different three-dimensional (3D) printers: Makerbot Replicator (FDM), 3D Systems SLA 6000 (SLA), and Objet Eden500V (Polyjet). A digital caliper was used to obtain measurements on the original plaster models as well as on the printed resin models.Methods: Results: Comparison between the 3D printed models and the plaster casts showed no statistically significant differences in most of the parameters. However, FDM was significantly higher on average than were plaster casts in maxillary left mixed plane (MxL-MP) and mandibular intermolar width (Md-IMW). Polyjet was significantly higher on average than were plaster casts in maxillary intercanine width (Mx-ICW), mandibular intercanine width (Md-ICW), and mandibular left mixed plane (MdL-MP). Polyjet was significantly lower on average than were plaster casts in maxillary right vertical plane (MxR-vertical), maxillary left vertical plane (MxL-vertical), mandibular right anteroposterior plane (MdR-AP), mandibular right vertical plane (MdR-vertical), and mandibular left vertical plane (MdL-vertical). SLA was significantly higher on average than were plaster casts in MxL-MP, Md-ICW, and overbite. SLA was significantly lower on average than were plaster casts in MdR-vertical and MdL-vertical. Conclusions: Dental models reconstructed by FDM technology had the fewest dimensional measurement differences compared to plaster models.


Micromachines ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 655 ◽  
Author(s):  
Seong-Woo Hong ◽  
Ji-Young Yoon ◽  
Seong-Hwan Kim ◽  
Sun-Kon Lee ◽  
Yong-Rae Kim ◽  
...  

In this study, a soft structure with its stiffness tunable by an external field is proposed. The proposed soft beam structure consists of a skin structure with channels filled with a magnetorheological fluid (MRF). Two specimens of the soft structure are fabricated by three-dimensional printing and fused deposition modeling. In the fabrication, a nozzle is used to obtain channels in the skin of the thermoplastic polyurethane, while another nozzle is used to fill MRF in the channels. The specimens are tested by using a universal tensile machine to evaluate the relationships between the load and deflection under two different conditions, without and with permanent magnets. It is empirically shown that the stiffness of the proposed soft structure can be altered by activating the magnetic field.


Author(s):  
Laxmi Poudel ◽  
Chandler Blair ◽  
Jace McPherson ◽  
Zhenghui Sha ◽  
Wenchao Zhou

Abstract While three-dimensional (3D) printing has been making significant strides over the past decades, it still trails behind mainstream manufacturing due to its lack of scalability in both print size and print speed. Cooperative 3D printing (C3DP) is an emerging technology that holds the promise to mitigate both of these issues by having a swarm of printhead-carrying mobile robots working together to finish a single print job cooperatively. In our previous work, we have developed a chunk-based printing strategy to enable the cooperative 3D printing with two fused deposition modeling (FDM) mobile 3D printers, which allows each of them to print one chunk at a time without interfering with the other and the printed part. In this paper, we present a novel method in discretizing the continuous 3D printing process, where the desired part is discretized into chunks, resulting in multi-stage 3D printing process. In addition, the key contribution of this study is the first working scaling strategy for cooperative 3D printing based on simple heuristics, called scalable parallel arrays of robots for 3DP (SPAR3), which enables many mobile 3D printers to work together to reduce the total printing time for large prints. In order to evaluate the performance of the printing strategy, a framework is developed based on directed dependency tree (DDT), which provides a mathematical and graphical description of dependency relationships and sequence of printing tasks. The graph-based framework can be used to estimate the total print time for a given print strategy. Along with the time evaluation metric, the developed framework provides us with a mathematical representation of geometric constraints that are temporospatially dynamic and need to be satisfied in order to achieve collision-free printing for any C3DP strategy. The DDT-based evaluation framework is then used to evaluate the proposed SPAR3 strategy. The results validate the SPAR3 as a collision-free strategy that can significantly shorten the printing time (about 11 times faster with 16 robots for the demonstrated examples) in comparison with the traditional 3D printing with single printhead.


2020 ◽  
Vol 64 (2) ◽  
pp. 231-234 ◽  
Author(s):  
Heechul Kim ◽  
Doyun Lee ◽  
Soo Young Lee ◽  
Hongso Yang ◽  
Sang-Won Park ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (19) ◽  
pp. 11147-11150 ◽  
Author(s):  
Dirk Volker Woortman ◽  
Martina Haack ◽  
Norbert Mehlmer ◽  
Thomas B. Brück

2020 ◽  
Vol 29 ◽  
pp. 2633366X2096736
Author(s):  
Wangwang Yu ◽  
Lili Dong ◽  
Wen Lei ◽  
Jianan Shi

The research aim of this work was to understand the effects of the soil burial of rice straw on the morphology and properties of 3D-printed rice straw powder (RSP)/polylactic acid (PLA) biocomposites. The rice straw buried in the soil for various days was grounded and sieved into powder at 120 mesh. The RSP was then mixed with PLA at a mass ratio of 15/100 and the mixture was extruded into filament, followed by a fused deposition modeling 3D printing process. The as-prepared products were characterized in terms of morphological, mechanical, thermal, and nonisothermal crystallization properties. The results show that cavities with large holes induced by fused deposition modeling exhibit on the cross section of RSP/PLA biocomposite. The longer the burial duration of rice straw, the more the cavities with large holes could be observed on the surface. Therefore, soil burial of rice straw improved the thermal stability of the biocomposites while depressing their mechanical properties due to the amplification of the cavities. The crystallinity of the biocomposites was maintained at a low level (<9%) before and after the soil burial process.


Sign in / Sign up

Export Citation Format

Share Document