A Heuristic Scaling Strategy for Multi-Robot Cooperative Three-Dimensional Printing

Author(s):  
Laxmi Poudel ◽  
Chandler Blair ◽  
Jace McPherson ◽  
Zhenghui Sha ◽  
Wenchao Zhou

Abstract While three-dimensional (3D) printing has been making significant strides over the past decades, it still trails behind mainstream manufacturing due to its lack of scalability in both print size and print speed. Cooperative 3D printing (C3DP) is an emerging technology that holds the promise to mitigate both of these issues by having a swarm of printhead-carrying mobile robots working together to finish a single print job cooperatively. In our previous work, we have developed a chunk-based printing strategy to enable the cooperative 3D printing with two fused deposition modeling (FDM) mobile 3D printers, which allows each of them to print one chunk at a time without interfering with the other and the printed part. In this paper, we present a novel method in discretizing the continuous 3D printing process, where the desired part is discretized into chunks, resulting in multi-stage 3D printing process. In addition, the key contribution of this study is the first working scaling strategy for cooperative 3D printing based on simple heuristics, called scalable parallel arrays of robots for 3DP (SPAR3), which enables many mobile 3D printers to work together to reduce the total printing time for large prints. In order to evaluate the performance of the printing strategy, a framework is developed based on directed dependency tree (DDT), which provides a mathematical and graphical description of dependency relationships and sequence of printing tasks. The graph-based framework can be used to estimate the total print time for a given print strategy. Along with the time evaluation metric, the developed framework provides us with a mathematical representation of geometric constraints that are temporospatially dynamic and need to be satisfied in order to achieve collision-free printing for any C3DP strategy. The DDT-based evaluation framework is then used to evaluate the proposed SPAR3 strategy. The results validate the SPAR3 as a collision-free strategy that can significantly shorten the printing time (about 11 times faster with 16 robots for the demonstrated examples) in comparison with the traditional 3D printing with single printhead.

Buildings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 516
Author(s):  
Essam Zaneldin ◽  
Waleed Ahmed ◽  
Aya Mansour ◽  
Amged El Hassan

Construction projects are often challenged by tight budgets and limited time and resources. Contractors are, therefore, looking for ways to become competitive by improving efficiency and using cost-effective materials. Using three-dimensional (3D) printing for shaping materials to produce cost-effective construction elements is becoming a feasible option to make contractors more competitive locally and globally. The process capabilities for 3D printers and related devices have been tightened in recent years with the booming of 3D printing industries and applications. Contractors are attempting to improve production skills to satisfy firm specifications and standards, while attempting to have costs within competitive ranges. The aim of this research is to investigate and test the production process capability (Cp) of 3D printers using fused deposition modeling (FDM) to manufacture 3D printed parts made from plastic waste for use in the construction of buildings with different infill structures and internal designs to reduce cost. This was accomplished by calculating the actual requirement capabilities of the 3D printers under consideration. The production capabilities and requirements of FDM printers are first examined to develop instructions and assumptions to assist in deciphering the characteristics of the 3D printers that will be used. Possible applications in construction are then presented. As an essential outcome of this study, it was noticed that the 3D printed parts made from plastic waste using FDM printers are less expensive than using traditional lightweight non-load bearing concrete hollow masonry blocks, hourdi slab hollow bocks, and concrete face bricks.


2021 ◽  
Vol 11 (3) ◽  
pp. 1047
Author(s):  
Jungirl Seok ◽  
Sungmin Yoon ◽  
Chang Hwan Ryu ◽  
Junsun Ryu ◽  
Seok-ki Kim ◽  
...  

Although three-dimensional (3D)-printed anatomic models are not new to medicine, the high costs and lengthy production times entailed have limited their application. Our goal was developing a new and less costly 3D modeling method to depict organ-tumor relations at faster printing speeds. We have devised a method of 3D modeling using tomographic images. Coordinates are extracted at a specified interval, connecting them to create mesh-work replicas. Adjacent constructs are depicted by density variations, showing anatomic targets (i.e., tumors) in contrasting colors. An array of organ solid-tumor models was printed via a Fused Deposition Modeling 3D printer at significantly less cost ($0.05/cm3) and time expenditure (1.73 min/cm3; both, p < 0.001). Printed models helped promote visual appreciation of organ-tumor anatomy and adjacent tissues. Our mesh-work 3D thyroidal prototype reproduced glandular size/contour and tumor location, readily approximating the surgical specimen. This newly devised mesh-type 3D printing method may facilitate anatomic modeling for personalized care and improve patient awareness during informed surgical consent.


2017 ◽  
Vol 107 (07-08) ◽  
pp. 520-523
Author(s):  
J. Prof. Bliedtner ◽  
M. Schilling

Das FDM (Fused Deposition Modeling)-Verfahren ist aufgrund der Vielzahl von industriellen und privaten Anwendungen gegenwärtig das erfolgreichste 3D-Druck-Verfahren. Ziel des Forschungs- und Entwicklungsprojektes „HP3D“ ist die effiziente Herstellung von großformatigen Bauteilen in einem echten 3D-Verfahren aus frei wählbaren thermoplastischen Kunststoffen. An die Umsetzung des Projekts wurde sehr komplex herangegangen, um zu garantieren, dass die mechanischen und dynamischen Eigenschaften der aufgebauten Teile den konzipierten Eigenschaften entsprechen. &nbsp; The FDM process is currently the most successful 3D printing process due to the multitude of industrial and private applications. The aim of the research and development project HP3D is the efficient production of large-format components in a real 3D process made of freely selectable thermoplastics. The implementation of the project has been very complex in order to ensure that the mechanical and dynamic properties of the assembled parts correspond to the designed properties.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
Nor Aiman Sukindar ◽  
M. K. A. Ariffin ◽  
B. T. Hang Tuah Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Fused deposition modeling (FDM) is one of the Rapid Prototyping (RP) technologies. The 3D Printer has been widely used in the fabrication of 3D products. One of the main issues has been to obtain a high quality for the finished parts. The present study focuses on the effect of nozzle diameter in terms of pressure drop, geometrical error as well as extrusion time. While using polylactic acid (PLA) as a material, the research was conducted using Finite Element Analysis (FEA) by manipulating the nozzle diameter, and the pressure drop along the liquefier was observed. The geometrical error and printing time were also calculated by using different nozzle diameters. Analysis shows that the diameter of the nozzle significantly affects the pressure drop along the liquefier which influences the consistency of the road width thus affecting the quality of the product’s finish. The vital aspect is minimizing the pressure drop to be as low as possible, which will lead to a good quality final product. The results from the analysis demonstrate that a 0.2 mm nozzle diameter contributes the highest pressure drop, which is not within the optimum range. In this study, by considering several factors including pressure drop, geometrical error and printing time, a 0.3 mm nozzle diameter has been suggested as being in the optimum range for extruding PLA material using open-source 3D printing. The implication of this result is valuable for a better understanding of the melt flow behavior of the PLA material and for choosing the optimum nozzle diameter for 3D printing.


Micromachines ◽  
2018 ◽  
Vol 9 (12) ◽  
pp. 635 ◽  
Author(s):  
Jinjie Luo ◽  
Haibao Wang ◽  
Duquan Zuo ◽  
Anping Ji ◽  
Yaowen Liu

As an advanced manufacturing technology that has been developed in recent years, three-dimensional (3D) printing of macromolecular materials can create complex-shaped components that cannot be realized by traditional processing. However, only a few types of macromolecular materials are suitable for 3D printing: the structure must have a single function, and manufacturing macromolecular functional devices is difficult. In this study, using poly lactic acid (PLA) as a matrix, conductive composites were prepared by adding various contents of multi-walled carbon nanotubes (MWCNTs). The printability and properties of MWCNT/PLA composites with different MWCNT proportions were studied by using the fused deposition modeling (FDM) processing technology of 3D printing. The experimental results showed that high conductivity can be realized in 3D-printed products with a composite material containing 5% MWCNTs; its conductivity was 0.4 ± 0.2 S/cm, its tensile strength was 78.4 ± 12.4 MPa, and its elongation at break was 94.4% ± 14.3%. It had a good melt flow rate and thermal properties, and it enabled smooth printing, thus meeting all the requirements for the 3D printing of consumables.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 124 ◽  
Author(s):  
Mohammad A. Azad ◽  
Deborah Olawuni ◽  
Georgia Kimbell ◽  
Abu Zayed Md Badruddoza ◽  
Md. Shahadat Hossain ◽  
...  

Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer–active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API–polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials–process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.


2017 ◽  
Vol 752 ◽  
pp. 119-125 ◽  
Author(s):  
Alexandru Victor Burde ◽  
Cristina Gasparik ◽  
Sorana Baciu ◽  
Marius Manole ◽  
Diana Dudea ◽  
...  

In the current orthodontic and prosthodontics practice, study models made of plaster are being used to provide a three-dimensional view of the patient’s occlusion and allow the clinician to analyze, diagnose, or monitor anomalies. With the introduction of intraoral and extra oral digital impressions, it is now possible to obtain digital study models of the patients’ dental arches. Digital models can be obtained in a physical hardcopy via 3D printing or rapid prototyping. Although, professional 3D printers require a high initial set-up cost, low cost 3D printers can provide similar quality products. The aim of this study is to investigate the accuracy of physical dental models reconstructed from digital data by two rapid prototyping techniques. For this purpose twenty mandibular and maxillary conventional plaster models from randomly chosen subjects were selected and served as the gold standard. The casts were digitized using a 3D scanner and .stl surface models were acquired; the virtual model was adjusted for reconstruction using dedicated software, thus obtaining the CAD model of the casts. The CAD models were reconstructed using a 3D fused deposition modeling (FDM) printer, a RepRap FDM printer and an inverted stereolithography printer. The reconstructed models were digitized using a laboratory 3D scanner and the resulting Mesh datasets were compared with the CAD model using inspection software. The mean systematic differences for the 3D comparison of the reconstructed models were 0.207 mm for the stereolithography models, 0.156 mm for the FDM models, and 0.128 mm for the RepRap models. Although a technology proved the ability to manufacture a dental model with accentuated morphology, the results demonstrate that replicas of plaster casts are influenced by problems linked to the size of the detail to be reproduced, which is often similar to or finer than the fabrication layer.


Author(s):  
Leonardo Portilha Gomes da Costa ◽  
Stephanie Isabel Díaz Zamalloa ◽  
Fernando Amorim Mendonça Alves ◽  
Renan Spigolon ◽  
Leandro Yukio Mano ◽  
...  

3D printers manufacture objects used in various dental specialties. Objective: This literature review aims to explore different techniques of current 3D printers and their applications in printed materials for dental purposes. Methods: The online PubMed databases were searched aiming to find applications of different 3D printers in the dental area. The keywords searched were 3D printer, 3D printing, additive manufacturing, rapid prototyping, 3D prototyping, dental materials and dentistry. Results: From the search results, we describe Stereolithography (SLA), Digital Light Processing (DLP), Material Jetting (MJ), Fused Deposition Modeling (FDM), Binder Jetting (BJ) and Dust-based printing techniques. Conclusion: 3D printing enables different additive manufacturing techniques to be used in dentistry, providing better workflows and more satisfying clinical results.


Sign in / Sign up

Export Citation Format

Share Document