Feasibility Study of Longitudinal–Torsional-Coupled Rotary Ultrasonic Machining of Brittle Material

Author(s):  
Jianjian Wang ◽  
Jianfu Zhang ◽  
Pingfa Feng ◽  
Ping Guo ◽  
Qiaoli Zhang

In order to further improve the processing performance of rotary ultrasonic machining (RUM), a novel longitudinal–torsional-coupled (LTC) vibration was applied to the RUM. An experimental study on quartz glass was performed to access the feasibility of the LTC-RUM of a brittle material. The LTC-RUM was executed through the addition of helical flutes on the tool of conventional longitudinal RUM (Con-RUM). The experimental results demonstrated that the LTC-RUM could reduce the cutting force by 55% and the edge chipping size at the hole exit by 45% on an average, compared to the Con-RUM. Moreover, the LTC-RUM could also improve the quality of the hole wall through the reduction of surface roughness, in particular, when the spindle speed was relatively low. The mechanism of superior processing performance of LTC-RUM involved the corresponding specific moving trajectory of diamond abrasives, along with higher lengths of lateral cracks produced during the abrasives indentation on the workpiece material. The higher edge chipping size at the hole entrance of LTC-RUM indicated a higher length of lateral cracks in LTC-RUM, due to the increase in the maximum cutting speed. Furthermore, the effect of spindle speed on the cutting force and surface roughness variations verified the important role of the moving trajectory of the diamond abrasive in the superior processing performance mechanism of LTC-RUM.

Author(s):  
Palamandadige Fernando ◽  
Meng Zhang ◽  
Zhijian Pei ◽  
Adam Owens

Abstract The aim of this study is to investigate the edge chipping and surface roughness of basalt rock processed by rotary ultrasonic machining (RUM) using compressed air as coolant. Basalt rock is commonly used as a building and construction material for foundations and dams, as well as in architectural designs such as constructing thin veneers and facades. Rotary ultrasonic machining, a hybrid process of grinding and ultrasonic machining, is employed to drill difficult-to-machine materials such as ceramics, composites, titanium alloys, stainless steel, etc. RUM has many advantages over conventional machining processes such as twist drilling. These advantages include lower cutting force, higher surface quality, lower tool wear, etc. This paper is the first in literature to report a study on edge chipping and surface roughness on RUM of basalt rock using cold compressed air as coolant. The effects of three input variables (tool rotation speed, feedrate, and ultrasonic power) on cutting force, torque, edge chipping, and surface roughness were studied. Experimental results obtained from this investigation show that RUM with cold air as the coolant has the capability to machine holes in basalt rock with a surface roughness of less than 3.5 μm without severe edge chipping.


2018 ◽  
Vol 249 ◽  
pp. 01006 ◽  
Author(s):  
Ankit Sharma ◽  
Atul Babbar ◽  
Vivek Jain ◽  
Dheeraj Gupta

Surface roughness is the key aspect which could increase the application of float glass by enhancing the machined hole quality. Glass is extensively used in microfluidic devices, bio-medical parts and biosensors. The core objective of the research study is to optimize the best parametric combination to achieve the least amount of surface roughness. The three major parameters which are used for designed experimental study are spindle speed, ultrasonic amplitude and feed rate. The least value of surface roughness is noticed at spindle speed (5000 rpm), vibration amplitude (20 μ m) and feed rate (6 mm/min) which be adopted for increasing its functional application. Consequently, after optimizing the parameters, least value of surface roughness at hole internal region is revealed as 1.09 μm.


2013 ◽  
Vol 325-326 ◽  
pp. 1357-1361 ◽  
Author(s):  
Yan Hua Huang ◽  
Dong Xi Lv ◽  
Yong Jian Tang ◽  
Hong Xiang Wang ◽  
Hai Jun Zhang

Experiments were carried out to study the effect of ultrasonic vibration on the surface roughness and subsurface damage (SSD) in rotary ultrasonic machining (RUM) of glass BK7. As a comparison, some conventional grinding (CG) experiments were also performed under the same process parameters with there of the RUM ones. The surface roughness of the RUM/CG samples was measured with a surface profilometer. The SSD of these specimens was assessed and characterized by a measuring microscope with the help of the taper polishing method. Also, the influence of process parameters (cutting depth, feed speed, and spindle speed) on the surface/subsurface quality was discussed. As a result, both the surface roughness and the SSD depth of the RUM/CG specimens were reduced with the increased spindle speed, while increased with the increasing of feed speed and cutting depth of the diamond tool. Compared with the CG process, the introduction of ultrasonic vibration resulted in the higher surface roughness and SSD depth, due to the fact that the max cutting depth of the abrasive in the RUM process increased by an amplitude compared with that in the CG process.


Author(s):  
Weilong Cong ◽  
Qiang Feng ◽  
Z. J. Pei ◽  
Clyde Treadwell

Many experiments on rotary ultrasonic machining (RUM) have been conducted to study how input variables (including tool rotation speed, ultrasonic power, feedrate, and abrasive size) affect output variables (such as cutting force, torque, surface roughness, and edge chipping) by using diamond tools. However, a literature review has revealed that there is no reported study on CBN tools in RUM. This paper, for the first time in literature, presents an investigation of RUM of stainless steel using CBN tools. Firstly, an introduction of superabrasive materials and RUM principle was provided. After presenting the experiment procedures and workpiece properties, it reports the results on tool wear, cutting force, torque, surface roughness in RUM of stainless. Finally, it discusses and compares the performances of diamond and CBN tools in RUM of stainless steel under certain conditions.


2006 ◽  
Vol 532-533 ◽  
pp. 969-972 ◽  
Author(s):  
Yu Chen ◽  
Zhi Jian Pei ◽  
Clyde Treadwell

This paper reports two investigations on the edge chipping in rotary ultrasonic machining using finite element analysis (FEA). The first FEA investigation establishes a relationship between edge chipping thickness and cutting force. The second FEA investigation is to understand the effects of three parameters (cutting depth, support length, and pre-tightening load) on edge chipping thickness. The investigation results showed that the edge chipping thickness could be reduced by increasing support length and decreasing cutting force.


Author(s):  
Hui Wang ◽  
Dongzhe Zhang ◽  
Yunze Li ◽  
Weilong Cong ◽  
Anthony R. Burks

Abstract Surface machining of carbon fiber reinforced plastic (CFRP) using rotary ultrasonic machining (RUM) with vertical ultrasonic vibration was effective in reducing many issues, including high cutting force, high torque, and high tool wear rate. The vertical ultrasonic vibration also induced damages to machined CFRP surfaces and then resulted in increased surface roughness. To simultaneously decrease surface roughness and cutting force, the direction of ultrasonic vibration needed to be parallel with the surface generation direction (horizontal feeding direction). The horizontal ultrasonic vibration was then developed and applied for RUM surface machining of CFRP. The application of horizontal ultrasonic vibration in RUM surface machining produced simultaneously decreased surface roughness and cutting force. However, there were no investigations on delamination in such a process, and delamination was considered as one of the major factors to reject the machined CFRP products. This investigation would study the delamination under different machining-variable groups, the delamination generation mechanisms, and the relationships between delamination and cutting forces through the experimental method in surface machining of CFRP using RUM with horizontal ultrasonic vibration. Smaller cutting force and delamination thickness would be produced by the smaller depth of cut, smaller feedrate, or larger tool rotation speed. Smaller indentation depth was generated by larger tool rotation speed or smaller feedrate. Smaller material removal rate and abrasive-grain number taking part in the cutting process were produced by the smaller depth of cut. The delamination initiation at larger uncut CFRP thickness would be induced by higher cutting force.


Author(s):  
W. M. Zeng ◽  
Z. C. Li ◽  
N. J. Churi ◽  
Z. J. Pei ◽  
C. Treadwell

Many experimental studies have been conducted to explore the relations between control variables and process outputs in rotary ultrasonic machining (RUM). However, there are few reports on the comparison between RUM and conventional diamond drilling. In this paper, the cutting force and surface roughness are compared when machining alumina with RUM method and with conventional diamond drilling method. Furthermore, the effects of the control variables (rotational speed, feed rate, and ultrasonic power) on RUM outputs (such as cutting force and surface roughness) are studied. It is found that in comparison with conventional diamond drilling, the cutting force can be reduced significantly and the surface roughness can be improved by using RUM. It is also found that rotational speed, feed rate, and ultrasonic power have significant effects on RUM process.


2016 ◽  
Vol 686 ◽  
pp. 180-185 ◽  
Author(s):  
Marcel Kuruc ◽  
Martin Kusý ◽  
Vladimír Šimna ◽  
Jozef Peterka

Poly-crystalline cubic boron nitride (PCBN) is one of the hardest known material. Therefore only advanced methods are able to treat such material. Advanced machining methods, proper for machining of hard and brittle materials (such as glass and ceramics) include rotary ultrasonic machining (RUM). This method should achieve high precision and low surface roughness (at least during machining of materials such as ceramics). Achievable roughness is affected by machined material and machining parameters. This contribution investigates influence of machining parameters, such as cutting speed and feed rate, on resultant surface roughness during machining of PCBN by rotary ultrasonic machining.


Sign in / Sign up

Export Citation Format

Share Document