scholarly journals Experimental Investigation of Inlet Distortion Effect on Performance of a Micro Gas Turbine

Author(s):  
Alireza Naseri ◽  
Shervin Sammak ◽  
Masoud Boroomand ◽  
Alireza Alihosseini ◽  
Abolghasem M. Tousi

An experimental study has been carried out to determine how inlet total-pressure distortion affects the performance of a micro gas turbine. An inlet simulator is designed and developed to produce and measure distortion patterns at the inlet to the gas turbine. An air jet distortion generator (AJDG) is used to produce nonuniform flow patterns and total pressure probes are installed to measure steady-state total-pressure distribution at the inlet. A set of wind tunnel tests have been performed to confirm the fidelity of distortion generator and measuring devices. Tests are carried out with the gas turbine exposed to inlet flow with 60 deg, 120 deg, and 180 deg circumferential distortion patterns with different distortion intensities. The performance of the gas turbine has been measured and compared with that of clean inlet flow case. Results indicate that the gas turbine performance can be affected significantly facing with intense inlet distortions.

Author(s):  
Feng-Shan Wang ◽  
Wen-Jun Kong ◽  
Bao-Rui Wang

A research program is in development in China as a demonstrator of combined cooling, heating and power system (CCHP). In this program, a micro gas turbine with net electrical output around 100kW is designed and developed. The combustor is designed for natural gas operation and oil fuel operation, respectively. In this paper, a prototype can combustor for the oil fuel was studied by the experiments. In this paper, the combustor was tested using the ambient pressure combustor test facility. The sensors were equipped to measure the combustion performance; the exhaust gas was sampled and analyzed by a gas analyzer device. From the tests and experiments, combustion efficiency, pattern factor at the exit, the surface temperature profile of the outer liner wall, the total pressure loss factor of the combustion chamber with and without burning, and the pollutants emission fraction at the combustor exit were obtained. It is also found that with increasing of the inlet temperature, the combustion efficiency and the total pressure loss factor increased, while the exit pattern factor coefficient reduced. The emissions of CO and unburned hydrogen carbon (UHC) significantly reduced, but the emission of NOx significantly increased.


Author(s):  
N. Fareeza ◽  
E.S. Tan ◽  
P. Kumaran ◽  
T.M. Indra ◽  
N. Fadzilah ◽  
...  

Energy ◽  
2016 ◽  
Vol 115 ◽  
pp. 1138-1147 ◽  
Author(s):  
Thom Best ◽  
Karen N. Finney ◽  
Derek B. Ingham ◽  
Mohamed Pourkashanian

Author(s):  
Shuai Shao ◽  
Qinghua Deng ◽  
Zhenping Feng

In this paper, an aerodynamic optimization of the radial inflow turbine for a 100kW-class micro gas turbine is conducted based on the metamodel-semi-assisted idea. The idea is applied by first using the metamodel as a rapid exploration tool and then switching to the accurate optimization without metamodel for further exploration of the design space [1]. The non-dominated sorting genetic algorithm (NSGA-II) is used to drive the optimization process and the BP neural network is used to construct the metamodel. The optimization of this radial inflow turbine is divided into two parts, the stator optimization and the rotor optimization. The stator optimization is based on the accurate optimization strategy. The minimum total pressure loss of the stator and the maximum isentropic total-to-static efficiency of the stage are considered as the objective functions with constant mass flow rate as a constraint. The rotor optimization is conducted through the metamodel-semi-assisted idea. The maximum power output and isentropic total-to-static efficiency of the stage are considered as objective functions while keeping the mass flow rate to be constant. The accurate optimization system is demonstrated to be effective for the stator optimization, and the total pressure loss is reduced by 11.6% while the mass flow rate variation is less than 1%. The rotor optimization is conducted based on the metamodel-semi-assisted optimization and the results confirm the effectiveness of this new idea. The output power of the rotor increased by 1.5%, the isentropic total-to-static efficiency of the stage increased by 1.19% and the mass flow variation is less than 1%.


2021 ◽  
Vol 13 (1) ◽  
pp. 89-95
Author(s):  
V. KIRUBAKARAN ◽  
David BHATT

The Lean Blowout Limit of the combustor is one of the important performance parameters for a gas turbine combustor design. This study aims to predict the total pressure loss and Lean Blowout (LBO) limits of an in-house designed swirl stabilized 3kW can-type micro gas turbine combustor. The experimental prediction of total pressure loss and LBO limits was performed on a designed combustor fuelled with Liquefied Petroleum Gas (LPG) for the combustor inlet velocity ranging from 1.70 m/s to 11 m/s. The results show that the predicted total pressure drop increases with increasing combustor inlet velocity, whereas the LBO equivalence ratio decreases gradually with an increase in combustor inlet velocity. The combustor total pressure drop was found to be negligible; being in the range of 0.002 % to 0.065 % for the measured inlet velocity conditions. These LBO limits predictions will be used to fix the operating boundary conditions of the gas turbine combustor.


2004 ◽  
Vol 21 (1) ◽  
pp. 47-56 ◽  
Author(s):  
P. Kotsiopoulos ◽  
S. Anastasiou ◽  
Th.I. Lekas ◽  
A. Kottarakos ◽  
A.S. Haslam ◽  
...  

2020 ◽  
Vol 4 (4) ◽  
pp. 172-180
Author(s):  
Aurthur Vimalachandran Thomas Jayachandran ◽  
HH Omar ◽  
AY Tkachenko ◽  
A Krishnakumar

Author(s):  
A. Naseri ◽  
M. Boroomand ◽  
A. M. Tousi ◽  
A. R. Alihosseini

This paper concerns investigating effect of inlet flow distortion on performance of a micro-jet engine. An experimental study has been carried out to determine how the steady state inlet total-pressure distortion affects the performance of a micro gas turbine engine. An inlet simulator is designed and developed to produce and measure distortion patterns at the engine inlet. An Air Jet Distortion Generator is used to produce non-uniform flow patterns and total pressure probes are implemented to measure steady state total pressure distribution at the engine face. A set of wind tunnel tests has been performed to confirm the fidelity of distortion generator and measuring devices. The engine got exposed to inlet flow with 60-degree, 120-degree, and 180-degree circumferential distortion patterns with different distortion intensities and the engine performance have been measured and compared with that of clean inlet flow. Results indicate that engine performance can be affected significantly facing with intense inlet distortions.


Sign in / Sign up

Export Citation Format

Share Document