Study on Fracture Initiation Mechanisms of Hydraulic Refracturing Guided by Directional Boreholes

2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Tiankui Guo ◽  
Facheng Gong ◽  
Zhanqing Qu ◽  
Xuxin Tian ◽  
Binyan Liu

In order to generate a new fracture far away from the original fracture in refracturing and effectively enhancing productivity, the technology of hydraulic refracturing guided by directional boreholes was presented. The effects of induced stress generated by the original hydraulic fracture, fracturing fluid percolation effect, wellbore internal pressure, and in situ stress on stress field distribution around wellbore were considered to obtain a fracture initiation model of hydraulic refracturing guided by two directional boreholes. The variation of maximum principal stress (σmax) under different conditions was investigated. The researches show that the directional boreholes result in a “sudden change region” of maximum principal stress around wellbore, reflecting dual stresses effects from vertical wellbore and directional boreholes on the rock. The width of sudden change region decreases as the distance from wellbore increases. Due to sudden change region, the refracturing fracture tends to initiate around directional boreholes. Whether the new fracture initiates and propagates along directional boreholes depends on comprehensive effect of borehole azimuth, borehole diameter, borehole spacing, horizontal stress difference, height, and net pressure of original fracture. The specific initiation position can be calculated using the theoretical model proposed in this paper. Affected by induced stress of the original fracturing, the rock tends to be compressed during refracturing, i.e., increased fracturing pressure. Sensitivity analysis with “extended Fourier amplitude sensitivity test (EFAST)” method shows the initiation of new fracture is mainly controlled by directional boreholes parameters and has little relation with in situ stress and parameters of original fracture. The influence rank of each parameter is as follows: borehole diameter > borehole spacing > original fracture net stress > borehole azimuth > horizontal stress difference > original fracture height. During design of refracturing, in order to better play the role of directional boreholes, and create a new fracture far away from original fracture, the optimal design is conducted with measures of optimizing boreholes azimuth, increasing borehole diameter and reducing borehole spacing if conditions permit. The research provides the theoretical basis for hydraulic refracturing guided by directional boreholes, which is helpful for the design of fracturing construction programs.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Tao Li ◽  
Hao Gong ◽  
Guoliang Xu

In order to understand the instability characteristics of surrounding rock in the process of deep roadway excavation, a three-dimensional numerical model was established by FLAC3D to systematically analyze the influence of roadway surrounding rock stability under different in situ stress distribution forms, and the environmental coefficient of mining-induced stress η was defined, the larger the environmental coefficient of mining-induced stress is, the larger the surrounding rock stress environment is, and the range where the η coefficient is greater than 0.2 is called with the destruction-danger zone. When the initial vertical stress is maximum principal stress and minimum principal stress, by comparing the roadway along the middle ground stress direction and minimum or maximum in-situ stress direction, the variation characteristics of displacement, failure zone and failure hazard zone of roadway surrounding rock are obtained, which provides theoretical basis for the treatment of disaster accidents such as roadway surrounding rock instability and rock burst caused by deep high in-situ stress.


2012 ◽  
Vol 616-618 ◽  
pp. 538-542 ◽  
Author(s):  
Fu Xiang Zhang ◽  
Wei Feng Ge ◽  
Xiang Tong Yang ◽  
Wei Zhang ◽  
Jian Xin Peng

To alleviate the problems of casing collapse induced by the coupling effect of rock salt creep and casing wear, the effects of salt creep, attrition rate and casing abrasive position on the equivalent stress on casings in non-uniform in-situ stress field is analyzed by finite-difference model with worn casing, cement and salt formation. It indicates that, creep reduces the yield strength of worn casing to a certain extent; Equivalent stress on casings is bigger and more non-uniform when the abrasion is more serious; Wear position obviously changes the distribution of equivalent stress on casing, and when the wear located along the direction of the minimum in-situ stress, equivalent stress on casing could be the largest that leads to the casing being failed more easily. Equivalent stress on casings increases gradually with creep time increasing and will get to balance in one year or so; In addition, new conclusions are obtained which are different from before: the maximum equivalent stress on casings is in the direction of the minimum horizontal stress, only when the attrition rate of the casing is little; otherwise, it is not. This method could help to improve the wear prediction and design of casings.


2021 ◽  
Author(s):  
Jianguo Zhang ◽  
Karthik Mahadev ◽  
Stephen Edwards ◽  
Alan Rodgerson

Abstract Maximum horizontal stress (SH) and stress path (change of SH and minimum horizontal stress with depletion) are the two most difficult parameters to define for an oilfield geomechanical model. Understanding these in-situ stresses is critical to the success of operations and development, especially when production is underway, and the reservoir depletion begins. This paper introduces a method to define them through the analysis of actual minifrac data. Field examples of applications on minifrac failure analysis and operational pressure prediction are also presented. It is commonly accepted that one of the best methods to determine the minimum horizontal stress (Sh) is the use of pressure fall-off analysis of a minifrac test. Unlike Sh, the magnitude of SH cannot be measured directly. Instead it is back calculated by using fracture initiation pressure (FIP) and Sh derived from minifrac data. After non-depleted Sh and SH are defined, their apparent Poisson's Ratios (APR) are calculated using the Eaton equation. These APRs define Sh and SH in virgin sand to encapsulate all other factors that influence in-situ stresses such as tectonic, thermal, osmotic and poro-elastic effects. These values can then be used to estimate stress path through interpretation of additional minifrac data derived from a depleted sand. A geomechanical model is developed based on APRs and stress paths to predict minifrac operation pressures. Three cases are included to show that the margin of error for FIP and fracture closure pressure (FCP) is less than 2%, fracture breakdown pressure (FBP) less than 4%. Two field cases in deep-water wells in the Gulf of Mexico show that the reduction of SH with depletion is lower than that for Sh.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Yuepeng Wang ◽  
Xiangjun Liu ◽  
Lixi Liang ◽  
Jian Xiong

The complexity of hydraulic fractures (HF) significantly affects the success of reservoir reconstruction. The existence of a bedding plane (BP) in shale impacts the extension of a fracture. For shale reservoirs, in order to investigate the interaction mechanisms of HF and BPs under the action of coupled stress-flow, we simulate the processes of hydraulic fracturing under different conditions, such as the stress difference, permeability coefficients, BP angles, BP spacing, and BP mechanical properties using the rock failure process analysis code (RFPA2D-Flow). Simulation results showed that HF spread outward around the borehole, while the permeability coefficient is uniformly distributed at the model without a BP or stress difference. The HF of the formation without a BP presented a pinnate distribution pattern, and the main direction of the extension is affected by both the ground stress and the permeability coefficient. When there is no stress difference in the model, the fracture extends along the direction of the larger permeability coefficient. In this study, the in situ stress has a greater influence on the extension direction of the main fracture when using the model with stress differences of 6 MPa. As the BP angle increases, the propagation of fractures gradually deviates from the BP direction. The initiation pressure and total breakdown pressure of the models at low permeability coefficients are higher than those under high permeability coefficients. In addition, the initiation pressure and total breakdown pressure of the models are also different. The larger the BP spacing, the higher the compressive strength of the BP, and a larger reduction ratio (the ratio of the strength parameters of the BP to the strength parameters of the matrix) leads to a smaller impact of the BP on fracture initiation and propagation. The elastic modulus has no effect on the failure mode of the model. When HF make contact with the BP, they tend to extend along the BP. Under the same in situ stress condition, the presence of a BP makes the morphology of HF more complex during the process of propagation, which makes it easier to achieve the purpose of stimulated reservoir volume (SRV) fracturing and increased production.


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1839-1855 ◽  
Author(s):  
Bing Hou ◽  
Zhi Chang ◽  
Weineng Fu ◽  
Yeerfulati Muhadasi ◽  
Mian Chen

Summary Deep shale gas reservoirs are characterized by high in-situ stresses, a high horizontal-stress difference (12 MPa), development of bedding seams and natural fractures, and stronger plasticity than shallow shale. All of these factors hinder the extension of hydraulic fractures and the formation of complex fracture networks. Conventional hydraulic-fracturing techniques (that use a single fluid, such as guar fluid or slickwater) do not account for the initiation and propagation of primary fractures and the formation of secondary fractures induced by the primary fractures. For this reason, we proposed an alternating-fluid-injection hydraulic-fracturing treatment. True triaxial hydraulic-fracturing tests were conducted on shale outcrop specimens excavated from the Shallow Silurian Longmaxi Formation to study the initiation and propagation of hydraulic fractures while the specimens were subjected to an alternating fluid injection with guar fluid and slickwater. The initiation and propagation of fractures in the specimens were monitored using an acoustic-emission (AE) system connected to a visual display. The results revealed that the guar fluid and slickwater each played a different role in hydraulic fracturing. At a high in-situ stress difference, the guar fluid tended to open the transverse fractures, whereas the slickwater tended to activate the bedding planes as a result of the temporary blocking effect of the guar fluid. On the basis of the development of fractures around the initiation point, the initiation patterns were classified into three categories: (1) transverse-fracture initiation, (2) bedding-seam initiation, and (3) natural-fracture initiation. Each of these fracture-initiation patterns had a different propagation mode. The alternating-fluid-injection treatment exploited the advantages of the two fracturing fluids to form a large complex fracture network in deep shale gas reservoirs; therefore, we concluded that this method is an efficient way to enhance the stimulated reservoir volume compared with conventional hydraulic-fracturing technologies.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Feng Wang ◽  
Shaojie Chen ◽  
Jialin Xu ◽  
Mengzi Ren

The traditional method to design coal pillar for lateral roof roadway was established based on the mining-induced strata movement contour which is considered as a straight line, while ignoring the variations of the internal strata deformation law as well as stress distribution characteristics. In order to make up for this deficiency, in this study, evolution of mining-induced stress in the overlying strata was simulated using physical and numerical simulations, and a method to design coal pillar for lateral roof roadway based on mining-induced stress was proposed. The results indicate that the stress of the overlying strata is redistributed during excavation, and the stress distribution can be divided into a stress-relaxation area, a stress-concentration area, and an in situ stress area. The contour line of 1.05 times the in situ stress is used to define the mining-induced stress contour. Stress inside the contour is redistributed while outside the contour the overlying strata are still within the in situ stress area. Mining-induced stress contour presents a concave-upward type from coal seam to the overlying strata that cannot be merged into a straight one due to their different characteristics of movement and deformation. With this in mind, this study proposed a method to design the width of coal pillar for lateral roof roadway according to the mining-induced stress contour. According to mining-induced stress contour, the width of coal pillar for lateral roof roadway of longwall panel 31100 is 160 m, and the maximum deformation of the roadway is 270 mm. The new method can definitely meet engineering demands.


2014 ◽  
Vol 501-504 ◽  
pp. 1766-1773
Author(s):  
Lin Hai Bao

Gaoligong Mountain tunnel is the key project in the Dali-Ruili Railway. In order to optimize the design and guide construction, In-situ stress has been conducted in five boreholes using hydraulic fracturing method, the current shallow crustal in-situ stress state at the project area are obtained according to the measurements results, and deep in-situ stress is predicted using lateral pressure coefficient. The test results show that at depths ranging from 299-979m, the maximum horizontal principal stress is 5.33-30.12Mpa, the minimum horizontal principal stress is 4.94-23.11Mpa, the horizontal principal stress reach 30Mpa at maximum the depth of burial, indicating that the engineering stress filed is dominated by horizontal stress. Based on the In-situ stress data and different distinguish methods, rockburst and large deformation are predicted. The results show that In-situ stress magnitude in this area is classified as high level, and the direction of the maximum horizontal stress is NEE, In-situ stress orientation is conductive to stable of the tunnel. When the tunnel passes through the deep-burial and hard rock, the wall rock may happen rockburst; and the large deformation may happen when the tunnel pass through the weak rock. In order to avoid the disadvantage conditions, reasonable excavation method and safety support method should be adopted during tunnel excavating.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhongcheng Qin ◽  
Bin Cao ◽  
Yongle Liu ◽  
Tan Li

In situ stress is the direct cause of roadway deformation and failure in the process of deep mining activities. The measured data of in situ stress in the Shuanghe coal mine show that the maximum principal stress is 44.94~50.61 MPa, and the maximum principal stress direction is near horizontal direction, which belongs to tectonic stress field. The maximum horizontal principal stress is 1.66~1.86 of the vertical stress. The horizontal principal stress controls the deep stress field. According to the measured data of in situ stress, the high-strength prestress bolt and cable collaborative support form is designed in the Shuanghe coal mine. Based on the stress field research of bolt and cable, the optimal prestress ratio of bolt and cable is proposed as 3. When the prestress ratio of bolt and cable is constant, the smaller the length ratio of bolt and cable is, the better the effect of prestressed field formed by cooperative support is. The results are applied to the support design of the mining roadway in the Shuanghe coal mine. Through the field monitoring test results, it is found that the maximum roof subsidence is 86 mm, the maximum floor deformation is 52 mm, and the maximum deformation of two sides is 125 mm. The surrounding rock control effect of the roadway is good, and the surrounding rock deformation conforms to the engineering technology standard requirements. The research results of this paper can provide some reference for the surrounding rock support of high ground stress mining roadway under similar conditions.


Sign in / Sign up

Export Citation Format

Share Document