longwall panel
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 40)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Qianjia Hui ◽  
Zengzhu Shi ◽  
Dongxu Jia

On August 2, 2019, a catastrophic rockburst disaster occurred in Tangshan mine, causing death of 7 miners. After the investigation, the coal mine is facing reproduction. Taking the 0291 panel as the engineering background, this paper studies the coal seam blasting pressure relief and ground stress monitoring technology in working face retreat. During the roadway development and working face excavation, coal seam blasting was adopted to transfer the high ground stress of coal seam to the deep ground of the coal body. The blasting operation is presented in detail in this paper. In the working face retreat stage, drilling powder method, hydraulic shield resistance monitoring, roof displacement, and vibration monitoring methods are implemented. The results show that the pressure relief range of coal seam is 4–12 m in the coal mass after blasting. The shield working resistance is stable at 20–30 MPa. The range of relative displacement of the roof is about −1.0 to 2.5 mm, and the maximum vertical vibration velocity is in the range of 7–11 cm/s, up to 12 cm/s. The measured parameters are acceptable, so it is concluded that 0291 panel can be safely mined. This study provides a reference for the coal seam blasting design for rockburst coal mine and provides a technical means for the analysis of pressure release effect and dynamic pressure monitoring during working face retreating.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Hongwei Wang ◽  
Daixin Deng ◽  
Ruiming Shi ◽  
Guozhen Yang ◽  
Shuo Xu ◽  
...  

As an extra-thick hard roof is a significant contributing factor to frequently induced sudden roof collapse accidents and coal bursts, this study investigates the relationship between extra-thick hard roof movement and mining-induced stress using physical experiments and numerical simulation methods based on mining activities in a longwall panel in the Yima mining area, Henan province, China. The results suggested that the movement and failure processes of the extra-thick roof could be divided into three main periods: the undisturbed, movement stabilization, and sudden collapse periods. The roof displacement remained essentially unchanged during the undisturbed period. During the movement stabilization period, the displacement gradually increased into the upper roof. However, the extra-thick main roof remained undisturbed until the immediate roof experienced its fourth periodic caving in the physical model. Consequently, the displacement expanded rapidly into the extra-thick main roof during the sudden collapse period and the strain energy was violently released when it accumulated in the extra-thick main roof. Additionally, the mining-induced stress was characterized by a sudden decrease in the gradual increase trend when the extra-thick roof instantly collapsed. The deformation and fracture of the extra-thick roof could cause a sudden decrease in the mining-induced stress and lead to continuous and unstable subsidence pressure exerted on the mining panel and roadway. This significantly contributes to the occurrence of coal bursts.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yang Li ◽  
Yuqi Ren ◽  
Nan Wang ◽  
Junbo Luo ◽  
Na Li ◽  
...  

Mining pressure behavior in the process of longwall panel face passing through the parallel abandoned roadways (PARs) is different from the ordinary longwall panel face. It is easy to induce the accident of roof falling, coal wall spalling, and crush accident of shield. In order to reduce the occurrence of mine pressure accidents and ensure safe mining, a new mining method named “swing-inclined” mining method was proposed and was employed in the E13103 of Cuijiazhai coal mine. Based on the process of the longwall panel face passing through the PARs, a long-span and multisupport mass-structure model of the roof was established. The maximum support capacity of shield was calculated combined with stability relation between “roof-shield-PAR-‘similar pillar (SP)’-coal wall.” It provided the basis for determining the reasonable support capacity of shield. Moreover, the sensitivity analysis of influenced factors to the maximum support capacity of shield was carried out by using Matlab software. The sensitivity analysis results indicated that different factors had a different effect on the support capacity of shield. And, the process of passing through the PARs can be divided into 3 stages, depending on the relation between support capacity of shield and width of SP. In different stages, the change degree of support capacity of shield was different. The support capacity of shield is mainly influenced by the hanging distance of the main roof and the horizontal distance between the support point of the coal wall and the breaking position of the main roof. By on-site measurement, the sensitivity analysis results were verified.


2021 ◽  
Vol 2 (4) ◽  
pp. 32-40
Author(s):  
Stanislav A. Pavlov

The article presents studies into aerodynamic processes in very long longwall panels. The computations in ANSYS using the finite volume method show that air drag in longwalls varies versus position of the longwall mining system in the panel. Enhancement of ventilation efficiency in longwalls requires reduction in air drag. The longwall air drag is governed by the air drags of the powered roof support and cutter-loader. The latter have very large dimensions which are technologically unchangeable. For this reason, it is necessary to ensure forced air flow to by-pass the cutter-loader in the longwall panel. The estimate of advantages of the proposed method for the air drag reduction in very long longwall panels is presented. The method consists in increasing air flow rate in the longwall with the help of an axial jet fan mounted on the cutter-loader.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Kai Zhang ◽  
Lu Bai ◽  
Pengfei Wang ◽  
Zhuang Zhu

Mining-induced subsidence is a great concern for environmental protection in underground mining areas in China and all over the world. In view of the fact that the research on land degradation above underground coal mines are completely or partially independent of coal mining activity and the fact that the mechanism behind mining-induced subsidence has not been well understood, this study presents a field measurement and numerical study of mining-induced subsidence with respect to mining activity of three adjacent longwall panels in a coal mine in Northwest China. This study shows that surface subsidence lags far behind panel extraction or mining activity. The profiles of ground surface are dominated and manifested by the subsurface strata structures. The subsidence influence throughout the whole length of a longwall panel varies. Stability of strata structures within overburden before the final subsidence controls the stability of ground surface land. Chain pillars of 20 m between panels of 240 m wide with cover depth of 600 m have been crushed in the gob and do not have any function in supporting the overburden strata. The final subsidence of the three adjacent panels is far to come in the future and the land reuse above underground coal mines should be carefully planned by making sure that the gob is completely compacted or no potential secondary subsidence occurs in the future.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Zhaohui Wang ◽  
Shengli Yang ◽  
Guoliang Xu ◽  
Zhijie Wen

In order to improve ground control of the longwall mining, ground response and mining-induced stress in the longwall panel of a kilometer-deep coal mine are investigated in this study. Field measurements on abutment stress, roof displacement, and fracture development indicate that the region influenced by the longwall mining reaches 150 m ahead of the longwall face. Failure scope of the coal seam, where mining-induced fractures are well developed, ranges from 10 to 13 m inward the face line. Vertical stress concentration coefficient reaches 2.2. Based on the field measurements, a numerical model is moreover developed and utilized to examine the response of the principal stress to the longwall mining. The concentration coefficient, peak point location, and influence scope of the principal stress gradually become stable with an increase in face advancement. Regarding the major principal stress, the concentration coefficient and influence scope are 2.4 and 152 m, respectively, and the peak point locates 13 m inward the face line, which are consistent with the field measurements. With respect to the minor principal stress, the referred coefficient and scope are 1.5 and 172 m, respectively, and its peak point location is 21 m ahead of the face line. The major principal stress in the coal seam rotates from vertical to horizontal direction in the vertical plane parallel with face advance direction. The maximum rotation angle reaches 20°. The minor principal stress first rotates into the referred vertical plane and then it rotates from horizontal to vertical direction at the same speed with the major principal stress in the same plane. Rotation angle of the principal stress in roof strata is greatly enlarged, the rotation trace of which is influenced by the longwall mining and vertical distance above the seam. Based on the relation between rotation trace of the principal stress and face advance direction, the influence of stress rotation on the stability of roof structure is discussed.


Author(s):  
Zhang Guangchao ◽  
Zang Chuanwei ◽  
Chen Miao ◽  
Tao Guangzhe ◽  
Li You ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qingyun Xu ◽  
Jian-Biao Bai ◽  
Shuai Yan ◽  
Rui Wang ◽  
Shaoxu Wu

Roadway support and management of longwall panels in an island soft coal panel are always difficult work. In a test mine, stress distribution, deformation characteristic, and plastic zone distribution around the roadway and coal pillars in the development and mining periods were investigated with respect to the widths of different coal pillars using theoretical and simulation methods. The most reasonable width of coal pillars was comprehensively determined, and the field test was conducted successfully. The results show that a reasonable width of coal pillars is 7.0–8.2 m using the analytical method. The distribution of vertical stress in the coal pillars showed an asymmetric “double-hump” shape, in which the range of abutment pressure was about 26.0–43.0 m, and the roadway should be laid away from stress concentration. When the coal pillar width is 5.0–7.0 m, deformation of the roadway is half that with 8.0–10.0 m coal pillar in the development and mining period. The plastic zone in the surrounding rock firstly decreases and increases with increasing coal pillar width; the smallest range occurs with a coal pillar width of 5.0 m. Finally, a reasonable width for coal pillars in an island panel was determined to be 5.0 m. Industrial practice indicated that a coal pillar width of 5.0 m efficiently controlled deformation of the surrounding rock, which was an important basis for choosing the width of coal pillars around gob-side entries in island longwall panels with similar geological conditions.


Sign in / Sign up

Export Citation Format

Share Document